

– Making a difference, together —

Anne Arundel County Roadway Vulnerability Assessment

Project Overview and Findings

March 12, 2025

General Housekeeping for Virtual Meetings

- Please use the Q & A to ask questions
- You can see your questions and answers, but not those from other participants
- Technical problems with the presentation will be addressed immediately
- Project-related questions will be answered at the end of the presentation
- Meeting is being recorded
- Recording, slides for meeting, and other materials will be shared on the project website

https://www.aacounty.org/public-works/highways/roadway-vulnerability-assessment

Project Team & Project Stakeholders

Core Project Team

DPW - Highways

- Alexander Baquie
- Blake Lightcap
- Scott Clement

McCormick Taylor

- Joe Knieriem
- Sean Doig
- Katherine Weber

DPW - BWPR

- Erik Michelsen
- Brenda Morgan
- **DPW Director's Office**
- Matt Diehl

Office of Transportation

Brian Ulrich

Emergency Management

- Kerry Topovski
- Preeti Emick

Resilience Authority/CE Office

Matthew Fleming

Planning and Zoning

Michael Stringer

Inspections and Permits

Raghu Badami

Today's Agenda

- Study Scope and Objectives
- Modeling Inundation
- Road Methodology and Results
- Bridge Methodology and Results
- Adaptation Measures
- Conclusion and Public Comment
- Questions

Study Scope

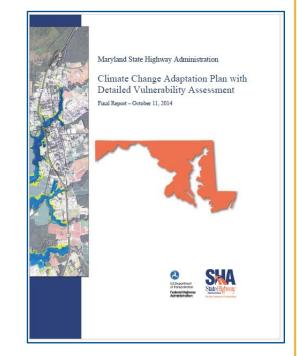
DPW awarded FEMA Building Resilient Infrastructure and Communities (BRIC) Grant to assess vulnerability of county-maintained roads and bridges to 3 climate stressors:

- Sea Level Rise
- Storm Surge
- Precipitation Change

Evaluate

- ~1800 miles of county-maintained roads
- 86 National Bridge Inspection Standards (NBIS) bridges

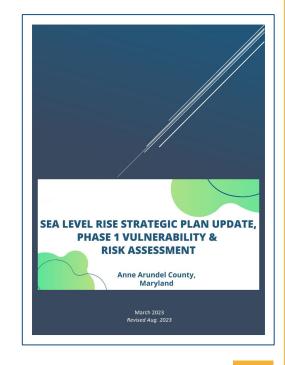
Project Objectives


- Build on previous studies
 - 2014 and 2019 MDOT SHA climate change studies
 - 2023 Anne Arundel Sea Level Rise Strategic Plan
- Tailor the methodologies to meet the county's specific needs and available data
- Identify vulnerable County roads and bridges
- Identify adaptation measures and develop an analysis of adaptation options framework
- Engage internal stakeholders and the public
- Summarize findings in comprehensive report

Previous Studies - 2014

- Climate Change Adaptation Plan with Detailed Vulnerability Assessment
 - Maryland State Highways Administration (SHA)
 - Final Report dated October 11, 2014
 - Pilot study limited to state maintained roads and bridges within Anne Arundel and Somerset Counties
 - Hazard Vulnerability Index (HVI) for state roads
 - Vulnerability Assessment Scoring Tool (VAST) to assess bridges & large culverts
 - Looked at sea level rise, storm surge, and precipitation change
 - 2 points in time—2050 & 2100

Previous Studies - 2019


- Integrating Extreme Weather and Climate Risk into MDOT SHA Asset Management and Planning
 - Maryland SHA
 - Final Report dated February 2019
 - Statewide study
 - VAST used for assessment of bridges and large culverts only
 - Studied sea level rise, storm surge, and precipitation change
 - 2050 only

	MARYLAND DEPARTMENT OF TRANSPORTATION STATE HIGHWAY ADMINISTRATION	Boyd K. Rutherfoo Lt. Conversor Pete K. Rahn Secroscry Gregory Stater Administrator
MARYLAND	DEPARTMENT OF TRANS	PORTATION
STAT	E HIGHWAY ADMINISTRA	TION
	EXTREME WEATHER AND A ASSET MANAGEMENT A	
A	final report from the FHW	A
Asset Managem	ent, Extreme Weather, and pilot program	Proxy Indicato
	FINAL REPORT	
	February 2019	

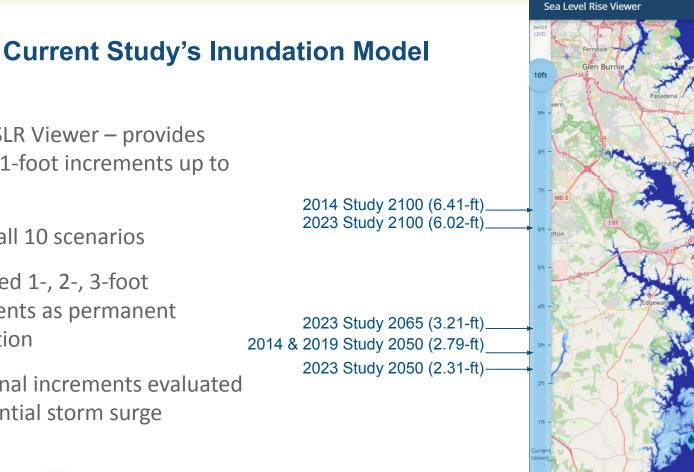
Previous Studies - 2023

- Sea Level Rise Strategic Plan Update, Phase 1 Vulnerability & Risk Assessment
 - Anne Arundel County
 - Revised August 2023
 - Countywide study
 - Studied sea level rise only
 - Evaluates impacts to privately owned land, public utility infrastructure, well/septic systems, and other resources and industries
 - 2050, 2065, and 2100 time horizons

Modeling Inundation

Sea Level Rise Inundation Steps

- **1.** Create an elevation model for the ground surface
 - Called a "Digital Elevation Model" or DEM
- 2. Model the existing water surface elevation
 - Typically built using NOAA gauge data
- 3. Model the future water surface elevation
 - Based on current climate change science
- 4. "Flood" the ground model based on:
 - Future water surface elevation
 - Hydrologic connection


Picture a checkerboard where every square is an elevation

Now rotate that 2D model to represent the 3D topography of an area

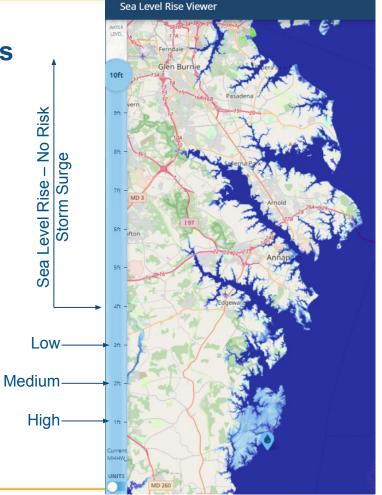
- And add the sea level rise scenario
 - Hydrologically connected areas below the new sea level will be inundated.
 - Flood depth in a given location will be the original elevation less the sea level rise elevation

- NOAA SLR Viewer provides data in 1-foot increments up to 10 feet
- Model all 10 scenarios н.
- Evaluated 1-, 2-, 3-foot increments as permanent inundation
- Additional increments evaluated н. as potential storm surge

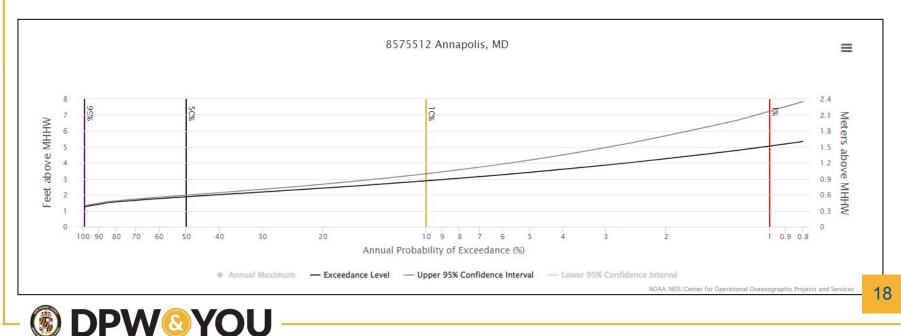
Road Methodology and Results

2014 MDOT SHA Study Road Methodology

- Only 2014 study assessed roads and it was state roads only
- Evaluated
 - Sea Level Rise (SLR)
 - Storm Surge 100-year storm event
- 3 components
 - What is the flood depth?
 - Is it an evacuation route?
 - What is the functional classification? (Local, Collector, Arterial, Interstate)


Current Study Road Methodology

- County-maintained Roads
- Evaluated
 - Sea Level Rise (SLR)
 - Storm Surge
 - Precipitation
- Each road segment evaluated as High/Medium/Low for:
 - <u>Likelihood</u> of inundation for each climate stressor
 - <u>Impact</u> on the larger system if inundation occurs
- Result is a 2D "risk matrix"

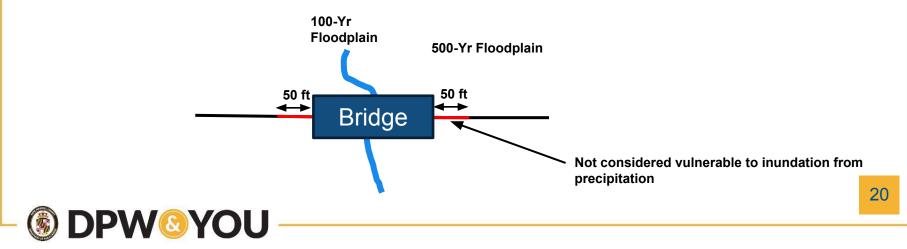

Sea Level Rise Likelihood Analysis

- NOAA SLR Viewer provides data in 1-foot increments up to 10 feet
- Inundation at 1-foot = High Risk
- Inundation at 2-feet SLR = Medium Risk
- Inundation at 3-feet SLR = Low Risk

Storm Surge – Likelihood Analysis

- Used Naval Academy Sea Level data back to 1930s
- Percent annual chance of a particular water elevation increase occurring

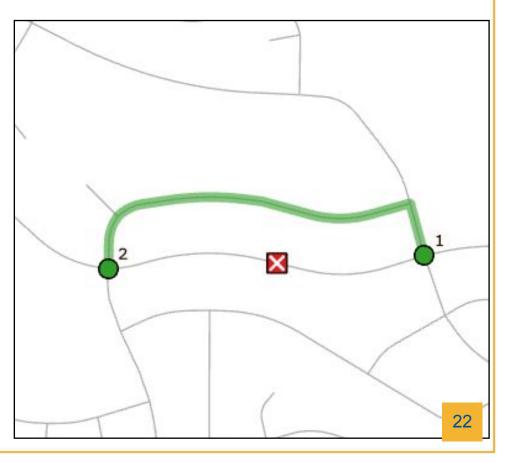
Storm Surge – Likelihood Breakdown


Elev Above SL	% Annual Likelihood Exceedance	% Annual Likelihood Upper 95% Confidence Interval	Score Category
1	99.0%	99.0%	High
2	50.0%	50.0%	High
3	8.0%	12.5%	Medium
4	2.5%	5.0%	Medium
5	1.0%	2.5%	Low
6	0.2%	1.5%	Low
7		1.0%	Low
8		0.2%	Low
9			Low
10			Low

No Inundation = No Risk

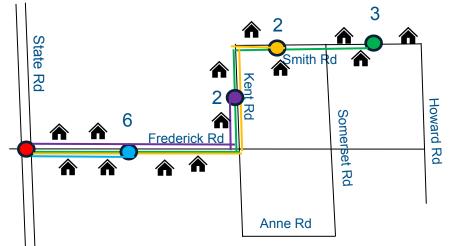
Precipitation – Likelihood Analysis

- High risk = within 100-feet of a <u>confirmed</u> flood location
- Medium risk = within the FEMA 100-Year Floodplain
- Low risk = within the FEMA 500-Year Floodplain
- Excluded sections of road associated with bridges within 50 foot of the bridge design criteria should place the road elevation above the floodplain


Impact

- Effect on the larger system if inundation occurs
- One score per road regardless of climate stressor
- Contributing Factors:
 - Detour 1 how much longer is the drive if a road is closed?
 - Detour 2 what's the cumulative traffic flow through the closed road?
- Approach differs from MDOT SHA studies
 - Evacuation route
 - Functional classification

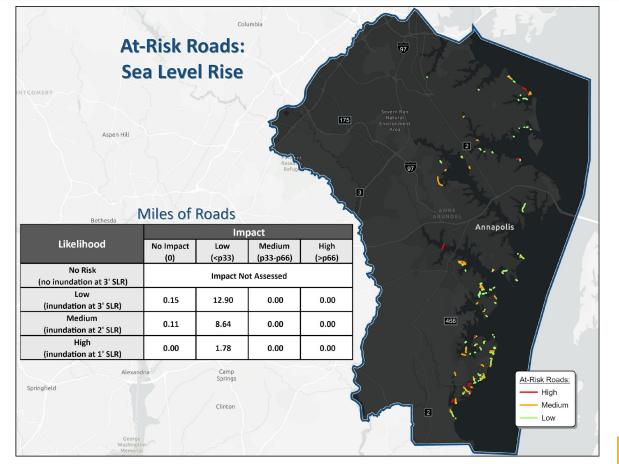
Detour 1 Analysis

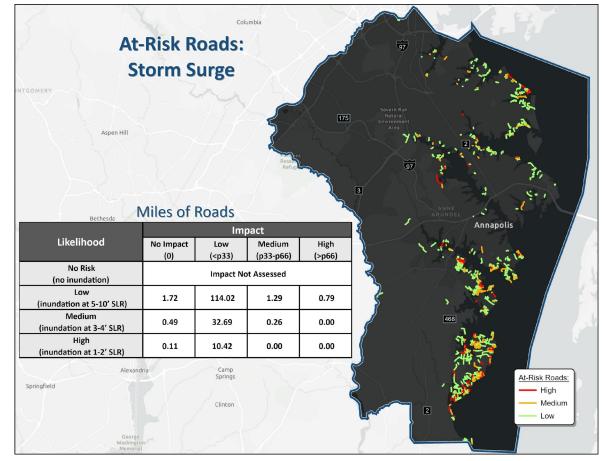

- 1. Captures how much <u>additional travel</u> <u>distance</u> is required if a road is closed
- 2. If no alternative route is available, detour 1 receives a higher score.

Detour 2 Analysis – Estimating Impact

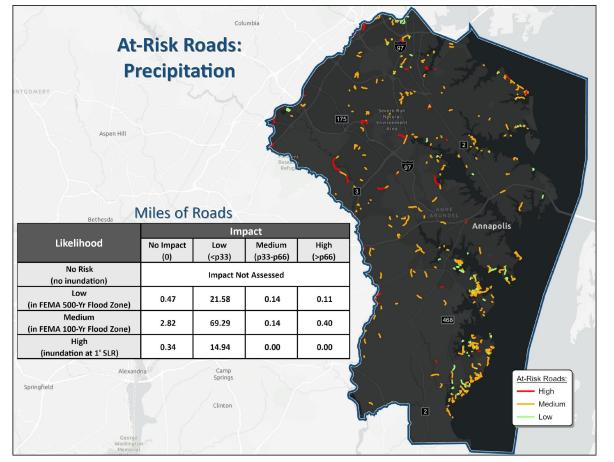
- 1. For all county roads, determine the route to the nearest state road for a given block.
- 2. Determine the number of addresses on that block.
- 3. If any portion of the route is closed then that is the number of addresses from this block that are impacted.
- 4. Replicate this analysis for every block. Use the routes to calculate number of impacted addresses if a specific block is closed.

Detour 2 Analysis – Real World Example




Final Road Assessment Scoring

	Indicator	Scoring
Like liho od	Sea Level Rise	High = Inundated at 1' SLR Medium = Inundated at 2' SLR Low = Inundated at 3' SLR
	Storm Surge	High = Inundated at 1'– 2' SLR Medium = Inundated at 3'– 4' SLR Low = Inundated at 5'– 10' SLR
	Precipitation	High = Within 100' of Confirmed Flooding Medium = Within FEMA 100-Yr Floodplain Low = Within FEMA 500-Yr Floodplain
Imp act	Travel Cost (Detour 1) x Volume (Detour 2)	High = > 17,277 Medium = <17,277 - 8,138 Low = <8,138
		20





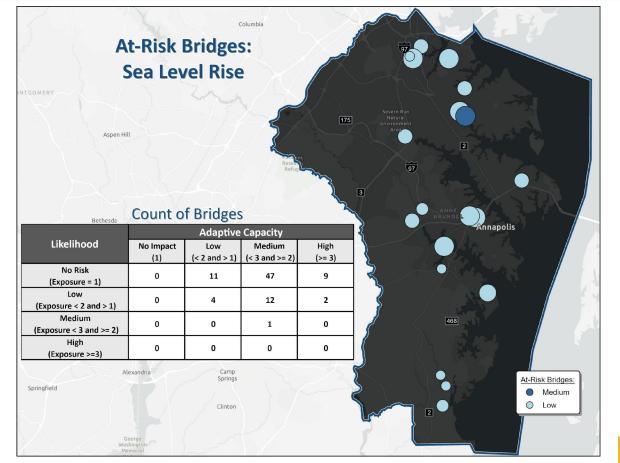
Bridge Methodology and Results

MDOT SHA Bridge Methodology

- Used the USDOT Vulnerability Assessment Scoring Tool (VAST)
- Indicators for each component
- Climate Stressors considered:
 - Sea Level Rise (SLR)
 - Storm Surge (SS)
 - Precipitation Change (PC)
- Each Stressor produces a unique vulnerability score

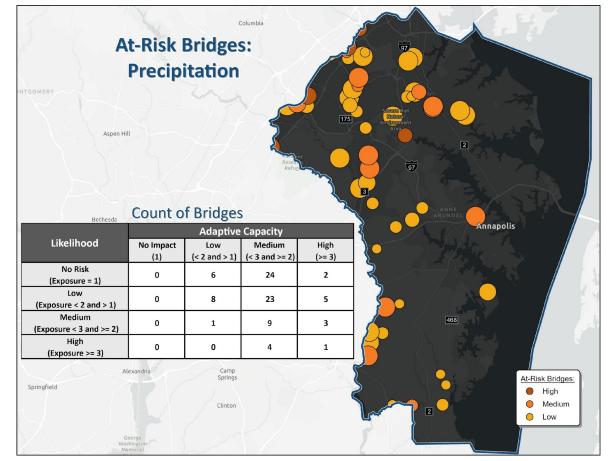
Current Study Bridge Methodology

- Used the VAST
- County-maintained bridges
- VAST output is a score between 1-4
- Converted these scores to a 2D high/medium/low "risk matrix"
 - Combined Exposure and Sensitivity to represent "likelihood"
 - "Impact" captured by VAST's Adaptive Capacity


Score	Category
>= 3	High
<3 and >= 2	Medium
<2 and > 1	Low
1	No Likelihood/Impact


Current Study Bridge Data Sources

- Used the same inundation data as for the roads
 - NOAA
 - FEMA
 - County road flood locations
- Sensitivity indicators came from the bridge dataset
 - Structure condition
 - Height above waterway
 - Age
- Adaptive Capacity
 - Detour 1
 - Functional Classification from bridge dataset
 - Average Daily Traffic (ADT) from bridge dataset



Adaptation Measures

Adaptation Measures Matrix

- Intergovernmental Panel on Climate Change (IPCC) defines Adaptation as the adjustment in natural or human systems in response to actual or expected climatic stimuli or their affects, which moderates harm or exploits beneficial opportunities.
- Focused on adaptation measures appropriate to inundation vulnerability for roads/bridges
- Synthesized adaptation measures from prior efforts and available resources
- Developed a tool or resource to identify adaptation measures appropriate to address specific observed or anticipated vulnerabilities

Adaptation Measures Matrix

- Organized by asset type, stressor, and vulnerability
 - Includes questions to help identify vulnerability
- Focuses on vulnerability and not impact
- Requires desktop and on-site investigation
 - Questions to identify vulnerability
 - Primary inspection element
- Provides potential engineering and operations & maintenance adaptations
- Provides resource information

Road Matrix

ROAD VULNERABILITY AND ADAPTATION MATRIX

Index	SLR	ss	6 PC	RR	Vulnerability	Questions to identify vulnerability	Primary inspection element		Decision	Engineering Adaptation	Operations & Maintenance Adaptation	Resources
1	SLR	ss	6 PC	RR	Approaches, embankments, and retaining structure undermining or washout	embankments? Evidence of rille or mess soil	scour/erosion at embankments and/or around retaining structures	Now No	Future	Elevate approaches; provide extended wing walls;	Add armoring (rip rap) to side slopes and embankments; ncrease frequency of inspections; consider continuous monitoring for high-risk, critical routes	Maryland Highway Drainage Manual; MDE Model Soil Erosion and sediment Control Ordinance (2018)
2	SLR	ss	6 PC		Detenonation of pavement and subgrades		pavement and subgrade condition (structural)	Now No		Elevate the pavement structure; increase design standards to withstand inundation/saturation	-	MDOT SHA Pavement Design Guide
3	SLR	ss	6 PC	RR	Sinkholes caused by subgrade inundation		standing water in drainage conveyances	Now No	Future	consider additional geotechnical explorations; provide	Consider groundwater monitoring in high-risk areas; apply grouting, geogrid reinforcement, underdrains, or mproved subgrade	MDOT SHA Standard Specifications for Subsurface Explorations; FHWA NHI-16-072
4	SLR	ss	S PC		Deteriorating roadside vegetation (salt exposure, inundation, drought)	Sparsely vegetated or unvegetated roadsides? Tidal exposure? Drought exposure? Exposure to SLR? SS? PC? RR?	vegetative cover of roadside	Now No				Section 3.3.4 in Maryland Highway Drainage manual, Design channel linings following FHWA HEC 15: Design of Roadside channels with Flexible Lining
5	SLR	ss	B PC		Debris accumulation on roadways and	Expected high water elevation with respect to road elevation? Exposure to SLR? SS? PC?	observed debris	Now No	Future	-		MDOT SHA Stormwater Management Facility Routine Maintenance Manual; MDOT SHA Highway Design Manual
6	SLR	ss	6		Salt impact to concrete pavement	Concrete composition? Expected high water elevation with respect to road elevation? Exposure to SLR? SS?	pavement structural condition	Now No	Future	Increase rebar cover thickness		MDOT SHA Standard Specifications for Construction Materials; MDOT SHA Pavement Design Guide
7	SLR		РС		nundation of adjacent sag curves where previously flooding was not present		rilis and/or flow pathways between adjacent culverts	Now No	Future	Reevaluate hydraulic analysis; increase primary or adjacent culvert crossing sizes/capacities; improve roadside conveyances between crossings	Ensure culverts and ditches remain clear of debris, deterioritation, and sedimentation	Maryland Highway Drainage Manual

Sea Level Rise Storm Surge Precipitation Change

Rainfall Runoff

Bridge Matrix – Part 1

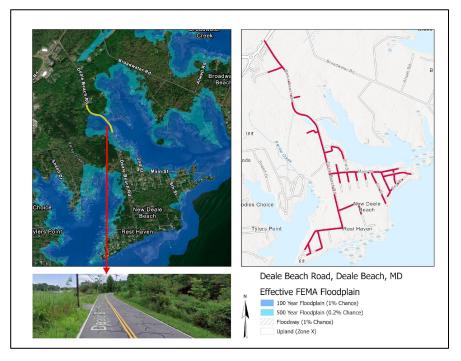
BRIDGE VULNERABILITY AND ADAPTATION MATRIX

Index	SLR S	is P	C RI	Vulnerability	How to identify vulnerability	Primary inspection element		Decision	Engineering Adaptation	Operations & Maintenance Adaptation	Resources
1	SLR S	iS P	ò	Roadway uplift due to soil saturation and roadway overtopping		Standing water in drainage conveyances, pavement condition	Now No	Future	Raise roadway if possible; install diversion and conveyance structures; improve roadway/pavement design; increased monitoring of infrastructure and conditions; consider asphalt/concrete mixtures that withstand flood conditions		ssues would be accounted for in design. Maryland 2018 pavement design guide
2	SLR S	is		Steel/concrete corrosion from nearer saltwater	Type of substructure material? Exposure to SLR? SS?	High water marks, substructure condition	Now No	Future	-		MDOT SHA Standards Specifications for Construction and Materials; FHWA-HRT-24-127: Best Practicies for Corrosion Control and Mitgation
3	SLR S	s		Structural instability due to buoyancy	Freeboard below substructure to expected high-water elevation? Exposure to SLR? SS?	High water marks	Now No	Future	Anchor superstructure to abutments and piers	Temporary placement of mass on superstructure	Various Maryland SHA details can be found at the online, including guidance on anchoring bridge superstructure to piers (See 03-09 for Bearings) FHWA-HRT-09-028: Hydrodynamic Forces on Inundated Bridge Decks
4	SLR S	iS		Mechanical systems of moveable structures (e.g., drawbridges) damaged by water		High water marks, mechanical system/vault condition	Now No	Future	Flood proofing	Install pumps and/or backup power	Mechanical systems mentioned in recent version of the Manual on Uniform Traffic Control Devices (MUTCD), but no mention of mechanical systems placement in case of flooding Hazards can be addressed using FEMA utility requirements for structures
5	SLR S	iS				High water marks, condition of utility casings	Now No	Future	-	Raise the utility above the anticipated SLR and/or design SS elevation where applicable	Hazards can be addressed using FEMA utility requirements for structures
6	SLR			Expansion of tidal range leading to tidal erosion where previously there was none.		Scour/erosion on banks and/or channel bed	Now No	Future	Scour protection; increase bridge opening;	Increased monitoring of infrastructure and conditions	Site dependent based on a hydraulic analysis. FHWA National Bridge Inspection Standards for inspections. FHWA Hydraulic Engineering Circular 18 Evaluating Scour at Bridges.
7	SLR			Raising tailwater leading to less stormwater conveyance capacity	Exposure to SLR but nt currently tidally influenced?	Observed water elevation, standing water in drainage conveyances	Now No		Install backflow preventers on closed systems; reevaluate stormwater conveyance systems, upgrade f warranted	-	Tailwater discussed in the Highway Drainage Manual (HDM) but backflow preventers are not included. FHWA-HIF-24-006: Urban Drainage Desig contains information on flap gates.
8	s	is P	C RI	High velocity flows beyond design level of service causing scour	Scour protection countermeasures present? Type of countermeasures? Exposure to SS? PC? RR?	Scour/erosion near bents	Now No	Future	Reevaluate the scour analysis and add additional counter measures as warranted	ncrease monitoring/inspection of critical structures on emergency routes; provide enhanced scour protection. retrofil/replace bridges as required for new scour conditions	Site dependent based on a hydraulic analysis. FHWA National Bridge Inspection Standards for inspections. FHWA Hydraulic Engineering Circular 18 Evaluating Scour at Bridges.

Bridge Matrix – Part 2

BRIDGE VULNERABILITY AND ADAPTATION MATRIX

Index	SLR S	ss <mark>PC</mark>	RR	Vulnerability	How to identify vulnerability	Primary inspection element		Decision	Engineering Adaptation	Operations & Maintenance Adaptation	Resources
9	s	SS PC		Floating debris damages		Observed debris at bents and substructure	Now No	Future	Depends on the hydraulic analysis. Evaluate ikelihood of upstream debris; if replacement/rebuild needed, elevate the bottom of the bridge (aka the "low shord") during design phase to porvide additional freeboard.Consider changes to design standards.	station equipment for rapid debris removal	MDOT SHA Stormwater Management Facility Routine Maintenance Manual; MDOT SHA Highway Design Manual FHWA HEC-09 Debris-Control Structures; TRB NCHRP Report 653: Effects of Debris on Bridge Pier Scour
10	s	SS PC		Debris settling on roadways with subsiding floodwater		Observed debris accumulation on approaches or roadside	Now No	Future	Provide open parapets for debris flow-through; if bridge needs to be replaced/rebuilt increase the bottom of the bridge (aka "low chord") elevation in design phase. Consider changes to design standards.	Station equipment for rapid debris removable	MDOT SHA Stormwater Management Facility Routine Maintenance Manual; MDOT SHA Highway Design Manual FHWA HEC-09 Debris-Control Structures; TRB NCHRP Report 653: Effects of Debris on Bridge Pier Scour
11	4	ss		Increased structural loading due to wind and/or waves		Substructure and/or superstructure cracking at bent connections	Now No	Future	Reevaluate structural design of inland bridges. Retrofit or replace as warranted.	-	MDOT SHA Office of Structures Guidelines and Procedures Memorandums;Several FHWA guidelines (e.g., FHWA-NHI-15-044: Enginering for Structural Stability in Bridge Construction)
12		PC			Type of countermeasures?	Observed scour/erosion at drainage conveyance outfalls and/or channel banks and bottom	Now No	Future	Reevaluate hydraulic analysis for changes to hydrology and sediment supply; provide countermeasures if scour potential increases	-	FHWA Hydraulic Engineering Circular 18 Evaluating Scour at Bridges.
13		PC		Increase in stormwater peak due to upstream land use changes	Increase in upland impervious land cover? Exposure to PC?	High water marks, erosion/scour	Now No	Future	Reevaluate hydrologic analysis; ensure bridge opening is still sufficient; increase hydraulic opening if needed	-	FHWA Hydraulic Engineering Circular 18 Evaluating Scour at Bridges.
14			RR	Runoff from approach roadway eroding embankments		Erosion/scour on embankments, rills forming on embankments	Now No	Future	Consider retrofit with closed drainage system around the structure		ssues would be accounted for in design. Maryland Highway Drainage Manual
15			RR	Scupper capacity exceeded from high intensity rainfall	Spacing of scuppers?	Water ponding on bridge during rain events, sediment/debris accumulation at scuppers	Now No	Future	Add additional scuppers; upgrade bridge deck and drainage systems	Clean debris from existing scuppers; monitor drainage system during extreme precipitation events	Site dependent based on a hydraulic analysis. FHWA HEC-21 Design of Bridge Deck Drains


Analysis of Adaptation Options

Implemented as a multi-step process for each identified vulnerable asset:

- Step 1 perform desktop and field investigations to determine applicability of individual specific vulnerabilities, either observed or anticipated
- Step 2 evaluate possible adaptation measures against all applicable specific vulnerabilities together to determine which are viable for further consideration
- Step 3 objectively assess the cost of viable adaptation measures against the extent of modeled impacts to quantify benefit

Case Study: Deale Beach Road

DPW[®]YOU

- Adjacent to Carrs Creek
- Sits in the FEMA 100-year floodplain
- Provides access to the rest of the County for about 241 households
- Modeling shows it will be inundated at 2 feet of inundations (SLR or SS)
- Output:
 - Sea Level Rise: Medium risk of inundation
 - Storm surge: High risk of inundation
 - Precipitation: Medium risk of inundation
 - Impact: Low

Step 1 - Evaluating Specific Vulnerabilities

- Conduct a desktop and site investigation to identify specific vulnerabilities observed
- Consult maintenance history records and inspection reports for supplemental information

Index	Vulnerability	Questions to identify vulnerability	Primary inspection element		Decision		Deale Beach Rd
1	Approaches, embankments, and retaining structure undermining or washout	Unvegetated shoulders or embankments? Evidence of rills or mass soil failures? Exposure to SLR? SS? PC? RR?	scour/erosion at embankments and/or around retaining structures	Now	ot visib Future visit neo	No	Y/N/Maybe? no known retaining structures nor noticeable erosion along embankments
2	Deterioration of pavement and subgrades due to inundation	Observed cracking or failure of pavement course? Exposure to SLR? SS? PC? RR?	pavement and subgrade condition (structural)	Now	Future	No	
3	Sinkholes caused by subgrade inundation	Standing water in drainage conveyances? High water table? Exposure to SLR? SS? PC? RR?	standing water in drainage conveyances	Now	Future	No	
4	Deteriorating roadside vegetation (salt exposure, inundation, drought)	Sparsely vegetated or unvegetated roadsides? Tidal exposure? Drought exposure? Exposure to SLR? SS? PC? RR?	vegetative cover of roadside	Now	Future	No	

Step 2 - Evaluating Adaptation Options

 The goal of this step is to evaluate all potential adaptation measures as a whole against all applicable specific vulnerabilities to determine which are actually viable options worth considering and which should be ruled out

Index	Vulnerability		Decision		Deale Beach Rd	Engineering Adaptation	Operations & Maintenance Adaptation
2	Deterioration of pavement and subgrades due to inundation	Now	Future	No	Y - the roadway has visible cracks that have been patched/repaired over time	Elevate the pavement structure; increase design standards to withstand inundation/saturation	-
4	Deteriorating roadside vegetation (salt exposure, inundation, drought)	Now	Future	No	Maybe - since part of road falls within the FEMA 100-yr floodplain and modeling results show its SLR likelihood score is at "Medium" and Storm Surge likelihood score is "High"	Consider alternative stabilizations (e.g., rip rap) within roadside conveyances	Retrofit with salt- and inundation-resistant vegetation; consider retrofitting with channel liners
7	Inundation of adjacent sag curves where previously flooding was not present	Now	Future	No	Maybe - SLR likelihood score is "Medium" and Storm Surge likelihood score is "High" (saltwater will likely inundate road), unknown if flooding is expected to occur at places where it usually doesn't, since its in the 100yr floodplain previous flooding is assumed likely	Reevaluate hydraulic analysis; increase primary or adjacent culvert crossing sizes/capacities; improve roadside conveyances between crossings	Ensure culverts and ditches remain clear of debris, deterioration, and sedimentation

Step 3 - Prioritizing Adaptation Options

- Accounting for modeled impact
- Questions to answer:
 - How to objectively compare viable options for a given asset?
 - How to objectively compare the selected option for each of multiple assets?
 - How to prioritize investment of limited resources?
- No one size fits all approach, but possible considerations include:
 - Accounting for frequency of inundation
 - Accounting for duration of impact
 - SLR = permanent
 - SS/PC = temporary

Step 3 - Prioritizing Adaptation Options

- Possible considerations continued:
 - Leveraging FEMA Benefit Cost Analysis Toolkit
 - \$ invested per # households benefited
 - \$ invested per additional mile of detour avoided
 - Benefit to critical facilities like Fire/EMS stations and service routes
 - Benefit to public utilities (water, sewer, electric, gas, communications)
 - Timing of adaptation projects around end of life replacement of assets
- Recommend using multiple factor prioritization when evaluating potential projects rather than just a single method to quantify benefit and compare potential projects

Conclusion & Public Comment Period

Conclusion

- Developed methodology to assess vulnerability of roads and bridges to 3 climate stressors
- Identified and categorized vulnerable road and bridge assets
- Presented the results in tabular and graphical format
- Developed Adaptation Measures Matrix to identify specific vulnerabilities
- Developed an Analysis of Adaptation Options process framework to apply to identified assets
- Results of this study will inform future candidate project identification and evaluation

Public Comment Period

 Recording of presentation, slides, and adaptation matrices will be posted to project webpage:

https://www.aacounty.org/public-works/highways/roadway-vulnerability-assessment

- Request for public comments submitted via the project webpage will open soon
- Methodology and results summarized in technical report to follow

Questions?

Contact Info:

Blake Lightcap

Anne Arundel County Public Works

pwligh00@aacounty.org

Roadway Vulnerability Assessment Project Website

Follow **DPW**

FACEBOOK

@annearundeldpw

YOUTUBE

Anne Arundel County DPW

INSTAGRAM

@annearundelcountydpw

LINKEDIN

Anne Arundel County

Department of Public Works

TWITTER @AACoDPW

Bureau of **Utility Operations**

24-Hour Emergency Water Service: (410) 222-8400 **Billing Inquiries:** (410) 222-1144

Bureau of Waste Management Services

Bulk Trash Service / Curbside Collections: (410) 222-6100

Bureau of Engineering

General Inquiries: (410) 222-7500

General Inquiries: (410) 222-7321 **Snow Line:** (410) 222-4040 **Email:** hwyscustomercare@aacounty.org

Bureau of Watershed Protection and Restoration

General Inquiries: (410) 222-4240

Customer Relations

General Inquiries: (410) 222-7582 Email: pwcust00@aacounty.org

