

Anne Arundel County, Maryland Department of Public Works *Watershed, Ecosystem, and Restoration Services*

Aquatic Biological Assessment of the Watersheds of Anne Arundel County, Maryland: 2008

Aquatic Biological Assessment of the Watersheds of Anne Arundel County, Maryland: 2008

Prepared by:

Tetra Tech, Inc. Center for Ecological Sciences 400 Red Brook Blvd. Suite 200 Owings Mills, MD 21117-5159

Prepared for:

Anne Arundel County Department of Public Works Watershed, Ecosystem, and Restoration Services 2662 Riva Road Annapolis, MD 21401

October 2010

Abstract

The Anne Arundel County Department of Public Works (DPW) assesses water resource quality as it relates to the intended uses of the waterbodies and State regulations. One intended use of all waterbodies is the support of aquatic life. Assessment of the ability of a stream to support aquatic life can be accomplished for the entire County through probability-based site selection (stratified random), sampling of the stream biota, and calculation of site-specific and watershed wide indicators. Further, observations of the physical habitat and water quality can help describe conditions that may be contributing to biological degradation. Sampling in five primary sampling units (PSUs) in 2008 partially fulfills the goal of County-wide stream assessment. The PSUs include Sawmill Creek, Rhode River, West River, Rock Branch, and Cabin Branch. The indicators used to assess the support of aquatic life in streams include the Benthic Index of Biological Integrity (B-IBI), the Rapid Bioassessment Protocol (RBP) physical habitat assessment, the MBSS Physical Habitat Index (PHI), and in situ water quality measures (temperature, dissolved oxygen, and specific conductance). Geomorphic conditions were also evaluated using the Rosgen classification of natural rivers. Each of these indicators was compared to established thresholds and the percentage of sites/samples meeting them is used to estimate the extent of biological degradation in the PSU, as well as the extent of physical habitat degradation. For the PSUs, 2% of the B-IBI scores indicated "Good" biological conditions and 8% indicated "Fair" conditions, and 90% of the streams were rated as either "Poor" or "Very Habitat measures using the RBP method indicated "Supporting" and "Partially Poor". Supporting" conditions in 12% and 56% of sites, respectively. The PHI indicated "Minimally Degraded," "Partially Degraded," "Degraded," and "Severely Degraded" conditions in 2%, 48%, 34%, and 8% of sites, respectively. Water quality measurements did not reveal temperature or dissolved oxygen values in non-attainment with state standards, though the sampling period did not coincide with the most stressful summer months. Thresholds for specific conductivity have not been established; however, the majority of values fall within normal ranges. A mix of stable and unstable channel types were observed during this assessment. Thirty-six percent of reaches assessed were classified as E type channels, considered a stable form. Conversely, 32% were classified as G type channels, a highly unstable form. Lesser amounts of B type (12%), C type (10%) and F type (2%) channels also were observed. All channels had sand-dominated bottoms and nearly all had slopes of much less than 2%. For the E types observed, significant differences in ER, Sinuosity, and W/D ratio were observed when compared to reference reach values for E types in the Western Coastal Plain. Water quality degradation is likely depressing biota at a minimum of 24% of sites.

Acknowledgements

The principal authors of this document are Christopher Victoria and Janis Markusic, of Anne Arundel County, and James Stribling and Benjamin Jessup, of Tetra Tech, Inc. They were assisted by Tetra Tech staff including Chris Millard, Erik Leppo, Carolina Gallardo, John Roberts, Chad Barbour, Brenda Decker, and Christopher Wharton. Aquatic Resources Center (Todd Askegaard, principal) completed benthic macroinvertebrate sample sorting and identification. The appropriate citation for this report is:

Victoria, C. J., J. Markusic, J. Stribling, and B. Jessup. 2010. Aquatic Biological Assessment of the Watersheds of Anne Arundel County, Maryland: 2008. Prepared for Anne Arundel County Department of Public Works, Watershed, Ecosystem, and Restoration Services, Annapolis, MD. Prepared by: Tetra Tech, Inc., Center for Ecological Science, Owings Mills, MD.

For more information about this report, please contact:

Christopher Victoria Department of Public Works Watershed, Ecosystem, and Restoration Services Anne Arundel County 2662 Riva Road / MS 7301 Annapolis, Maryland 21401 410.222.4240 pwvict16@aacounty.org

Table of Contents

Introduction	1
Purpose of Biological and Physical Habitat Assessment	2
Methods	2
Network Design	2
Summary of Sampling Design	2
Site Selection	2
Alternate Sites	3
Field Sampling and Laboratory Processing	3
Benthic Sampling and Processing	5
Benthic Taxonomy	5
Physical Habitat Rating (Methods for Calculation and Scoring)	5
Water Quality	6
Geomorphic Assessment	6
Data Analysis	7
Data Structure	7
Land Use and Impervious Surface Evaluation	7
Physical Habitat	7
Biological Index Rating	8
Water Quality	9
Geomorphic Assessment	9
Results and Discussion	. 11
Comparisons among Sampling Units	. 11
Biological Assessment Summary	. 11
Habitat Assessment Summary	. 12
Water Quality Assessment Summary	. 12
Geomorphic Assessment Summary	. 13
Primary Sampling Unit Discussions	. 14
Sawmill Creek (04)	. 14
Aquatic Habitat	. 14
Benthic Macroinvertebrates	. 15
Water Quality	. 14
Geomorphic Assessment	. 14
Rhode River (13)	17
Aquatic Habitat	17
Benthic Macroinvertebrates	. 17
water Quality	. 17
Geomorphic Assessment	. 19
West River (14)	. 20
Aqualic Habilal	. 20
Bentnic Macroinvertebrates	. 20
Water Quality	. 20
Book Bronch (20)	. 20
A quotic Habitat	. 23
Aqualle Magrainvartabratas	. 23 22
Water Opality	. 23
Geomorphic Assessment	23
Geomorphic Assessment	. 49

- Appendix A: Sample Field Sheets
- Appendix B: Rosgen Stream Classification
- Appendix C: Geomorphic Assessment Results
- Appendix D: Quality Control Summary
- Appendix E: Master Taxa List
- Appendix F: Individual Site Summaries

List of Tables

Table 1. Alternate sites sampled	4
Table 2. EPA RBP Scoring.	7
Table 3. MBSS PHI Scoring Ranges	8
Table 4. MBSS BIBI Metrics	8
Table 5. MBSS BIBI (2005) Scoring	9
Table 6. Code of Maryland (COMAR) Water Quality Standards	9
Table 7. Summary of BIBI and habitat scores across sampling units	12
Table 8. Average water quality values—Sawmill Creek	14
Table 9. Average water quality values—Rhode River	17
Table 10. Average water quality values—West River	20
Table 11. Average water quality values—Rock Branch	23
Table 12. Average water quality values—Cabin Branch	26
Table 13. Comparison of biological scores to EPA RBP habitat condition	29
Table 14. Comparison of biological scores to MBSS PHI habitat condition	30
Table 15. Reaches for which the paired assessments of biological condition and physical ha	bitat
quality indicate potential stressor type affecting stream biota	30
Table 16. Comparison of average E channel dimensionless ratios found in this study to othe	r
sources	31
Table 17. Comparison of mean observed stream reach characteristics by stream type to mea	n
values typical for the stream type	32

List of Figures

Figure 1. Primary sampling units assessed during 2008	3
Figure 2. Proportional distribution of BIBI scores observed during the 2008 assessment12	2
Figure 3. Proportional distribution of physical habitat quality assessments (RBP and MPHI)	
across all 2008 PSUs	3
Figure 4. Summary of Rosgen stream types assessed in 20081	3
Figure 5. Sampling locations in the Sawmill Creek primary sampling unit (04)1	5
Figure 6. Proportional distribution of physical habitat quality assessments (RBP and MPHI) for	
the Sawmill Creek PSU	6
Figure 7. Proportional distribution of B-IBI assessment results for the Sawmill Creek PSU1	6
Figure 8. Summary of Rosgen stream types in the Sawmill Creek sampling unit1	6
Figure 9. Sampling locations in the Rhode River primary sampling unit (13)1	8
Figure 10. Proportional distribution of physical habitat quality assessments (RBP and MPHI) for	r
the Rhode River PSU	9
Figure 11. Proportional distribution of B-IBI assessment results for the Rhode River PSU19	9
Figure 12. Summary of Rosgen stream types in the Rhode River sampling unit19	9
Figure 13. Sampling locations in the West River primary sampling unit (14)2	1
Figure 14. Proportional distribution of physical habitat quality assessments (RBP and MPHI)	
for the West River PSU	2
Figure 15. Proportional distribution of B-IBI assessment results for the West River PSU2	2
Figure 16. Summary of Rosgen stream types in the West River sampling unit	2
Figure 17. Sampling locations in the Rock Branch primary sampling unit (20)24	4
Figure 18. Proportional distribution of physical habitat quality assessments (RBP and PHI) for	
the Rock Branch	5

Figure 19. Proportional distribution of B-IBI assessment results for the Rock Branch PSU	25
Figure 20. Summary of Rosgen stream types in the Rock Branch sampling unit	25
Figure 21. Sampling locations in the Cabin Branch primary sampling unit (23)	27
Figure 22. Proportional distribution of physical habitat quality assessments (RBP and PHI) f	or
the Cabin Branch PSU	28
Figure 23. Proportional distribution of B-IBI assessment results for the Cabin Branch PSU	28
Figure 24. Summary of Rosgen stream types in the Cabin Branch sampling unit	28
Figure 25. Comparison of field collected A) bankfull channel width, B) bankfull channel are	a,
and C) bankfull channel mean depth with Coastal Plain regional relationships in rural and ur	oan
watersheds	33

Introduction

Anne Arundel County is bordered on the north by the Patapsco River, to the west by the Patuxent River and to the east by the Chesapeake Bay. All streams within the County, whether directly or eventually discharge indirectly, into the Chesapeake Bay. The Chesapeake Bay is the largest estuary in the United States (USEPA 2004) with a drainage area of over 64,000 square miles. It provides ideal habitat for a broad diversity of plant and animal species, and is an important economic and recreational resource for the more than 15 million people who live in its basin. However, rapidly expanding human activity and population in the basin is leading to increasing landscape conversion, rates of new and intensifying point and nonpoint sources of pollutants, and multiple other sources of stressors to environmental conditions. These factors can impair or destroy ecological integrity of stream systems, necessitating ecological restoration.

Broadly defined, ecological restoration is the elimination or buffering of stressors and stressor sources such that the system of interest is restored to some semblance of pre-disturbance conditions. extremely important confirmation One of restoration effectiveness is based on whether or not there is positive change in biological Further, such changes are most conditions. effectively measured at spatial scales above that of individual stream reaches, requiring monitoring in such a way as to allow broad spatial coverage, to minimize bias in the site selection process, and to structure assessments at multiple spatial scales. While it is impossible to know all stressor sources, the results of probability-based monitoring allow the description (with known confidence) of the cumulative effects of multiple sources. This is imperative because habitat fragmentation caused by development or other stressors can often be underestimated at smaller spatial scales (Robinson et al. 1992, Suter 1993). Further, traditional regulatory approaches do not adequately address

the effects of non-point source pollution, such as runoff or nutrient enrichment (USEPA 1996).

In 2004, the Anne Arundel County began a fiveyear, rotating basin sampling effort to assess the ecological condition of streams and watersheds throughout the County (Hill and Stribling 2004). The primary goals of the biomonitoring program are to assess the current ecological status of streams and watersheds of the County and to establish baseline conditions to which future assessments can be compared; to assess the status and trends of the biological stream resources, and to relate them to specific programmatic activities, such as BMP placement, installation, and evaluation (Stribling et al. 2001); stormwater discharge permits; contributing to restorations initiatives (such as DNR's Watershed Restoration Action Strategy [WRAS]); and guidelines for Low Impact Development [LID, PG County 2000).

In the first year of the monitoring program (2004), the Severn River (Severn Run and Lower Severn River), Lower Patapsco River, Middle Patuxent River, and Ferry Branch subwatersheds were assessed (Victoria and Markusic 2007). In 2005, Herring Bay, South River (Upper and Lower), Lyons Creek and Stocketts Run subwatersheds were assessed (Roberts et al. 2006). The third year (2006) addressed the Marley Creek, Bodkin Creek, Upper Magothy River and Hall Creek subwatersheds (Stribling et al. 2008a); and assessments in 2007 focused on the Upper Patuxent River, Little Patuxent River, Piney Run, Magothy River Stony Run. and Lower subwatersheds. The purpose of this report is to present sampling, analysis, and assessment results for the fifth year of sampling (2008), representing the final year of the 5-year, rotating basin biological monitoring and assessment program for Anne Arundel County. Subwatersheds sampled for this effort include the Sawmill Creek, Rhode River, West River, Rock Branch, and Cabin Branch subwatersheds.

Purpose of Biological and Physical Habitat Assessment

The use of benthic macroinvertebrates as the basis of biological assessments is advantageous because 1) they are ubiquitous and often occur in large numbers; 2) they respond to cumulative effects of physical habitat alteration, point source pollution, non-point source contaminants; 3) they are relatively sedentary; and 4) different aspects of the benthic assemblage change in response to degraded conditions (Barbour et al. 1999).

To supplement biological sample collection, physical habitat quality was also visually assessed at each sampling location (Barbour et al. 1999, Kazvak 2001), which reflects physical complexity of the stream channel, the capacity of the stream to support a "healthy" biota, and potential of the channel to maintain normal rates of erosion and other hydrogeomorphic functions. Moreover, impacts on physical habitat through sustained farming operations, increased housing density, and other urban-suburban developments (highways, schools. shopping centers) can cause sedimentation, degradation of riparian vegetation, and bank instability, potentially leading to reduced overall habitat quality (Richards et al. 1996).

Further factors such as interruption of natural hydrologic regimes, alterations in food/energy sources and water quality, and nonnative invasive species cause the biological condition of a stream to deteriorate (Karr et al. 1986). Potential stressors that cause this type of degradation include nutrient enrichment, toxic spills, flood control engineering, temperature extremes due to depletion of riparian zones or effluent discharge, and elevated levels of suspended sediment due to livestock access, clearing of riparian areas, and/or construction runoff. Sources of these stressors exist throughout Anne Arundel County. However, although biological monitoring is a critical tool for detecting impairment, it cannot identify specific causal relationships between stressors and stressor sources (Norton et al. 2000, USEPA 2000).

Combining results from both biological and physical habitat assessments can provide insight into the potential types of stressors and stressor sources causing observed biological impairment. This allows prioritization of more detailed, diagnostic investigations based on the severity of observed biological responses. This report reflects the current biological, physical, and geomorphological conditions of Sawmill Creek, Rhode River, West River, Rock Branch, and Cabin Branch subwatersheds. (Figure 1), and provides potential reasons for those conditions.

Methods

Network Design

Summary of Sampling Design

Measurement and data quality objectives (MQOs and DQOs) for the Anne Arundel County biological monitoring program, including the approach for selection of sampling locations and documentation of data quality and performance characteristics, is presented in Hill and Stribling (2004) and Hill et al. (2005).

Site Selection

The program is designed so that 10 sites in each of four or five primary sampling units (PSU) are sampled per year, thus totaling 40-50 sites per year. Over the term of the five-year program, during which a total of 24 PSUs have been sampled, spatial allocation of the sampling segments was based on random selection within Strahler (1957) stream orders. Allocation of sample sites among 1st, 2nd, and 3rd order streams was proportional to the total number of stream channel miles categorized as those orders Final selection and placement of sampling segments was random; stratified by subwatershed and stream order at 1:100,000 scale.

Original Site	Alternate Site	Reason
04-02	04-12A	Dry streambed -BWI
04-03	04-13A	No stream at location
04-04	04-15A	No stream at location
04-05	04-20A	Dry streambed
23-08	23-13A	Denied access by landowner
20-09	20-11A	Could not locate landowner
13-01	13-11A	Denied access by landowner
13-02	13-12A	Denied access by landowner
13-09	13-13A	Could not locate landowner - knocked on door 2 times
13-10	13-14A	Denied access by landowner
14-04	14-12A	No good access
14-05	14-14A	No access - could not locate landowner
14-08	14-16A	Dry streambed

Table 1.	Alternate	sites	samp	led.
----------	-----------	-------	------	------

For 2008, 10 randomly-selected sites were chosen from each PSU (Sawmill Creek [PSU no. 4], Rhode River [13], West River [14], Rock Branch [20], and Cabin Branch [23]) for a total of 50 sites. One site within each PSU was randomly-selected as a duplicate, to be used for quality control (QC), and to allow calculation of measurement (systematic) error, or field sampling precision. The number of repeat samples collected was 10 percent of the total for this sampling event (5 sites randomly selected from list for replication); thus, there were a total of 55 samples collected at 50 sites. Only biology, chemistry, and physical habitat data were collected at the QC sites.

Alternate Sites

In addition to the ten randomly selected primary sites, ten alternate sites were also selected. In the event that a primary site could not be sampled (e.g., due to access denial, non-wadeable, or impounded channel), the first alternate site of the same stream order was sampled in its place. This maintains the randomness of the design, while incorporating the flexibility necessary to account for unforeseen circumstances in the field. During the 2008 sampling period, it was necessary to sample 13 alternate sites (**Table 1**).

Field Sampling and Laboratory Processing

Sites were located in the field using topographic maps and handheld GPS units for navigation to pre-selected coordinates, which mark the midpoint of each site. A 75-meter segment of stream was measured following the thalweg, and both upstream and downstream ends were flagged and labeled. Field data collection was conducted in accordance with the methods described in the *Sampling and Analysis Plan (SAP) for Anne Arundel County Biological Monitoring and Assessment Program* (Tetra Tech 2005), which is summarized below. Field data collection forms are included in *Appendix A*.

Figure 1. Anne Arundel County, Maryland. Sampling units assessed for the fifth year of the County's monitoring program (2008). Numbers are associated with the subwatershed framework of the monitoring design.

Benthic Sampling and Processing

Benthic macroinvertebrates were collected over a 75-meter reach by sampling approximately 20 ft² of surface area with a D-frame net (595 µm mesh), with an emphasis on the most productive habitat types (e.g., riffles, snags, vegetated banks, sandy bottom) found within the reach. The most productive habitat types, in order of sampling preference, include riffles, gravel/broken peat and/or clay lumps in a run area, snags/logs that create a partial dam or are in a run area, undercut banks and associated root mats in moving water, and detrital/sand areas in moving water. Kazyak (2001) also states that it is appropriate to move outside of the 75m reach if necessary to locate riffle habitat. Samples are primarily collected by jabbing the net into a habitat type (snags, root wads) to dislodge organisms or by disturbing the bottom substrate just upstream of the net allowing organisms to wash into the net. Larger surfaces such as logs or cobbles are often scrubbed by hand to further dislodge organisms. All sampled material (including leaf litter, small woody debris, and sediment) was composited in a 595 µm sieve bucket, placed in one or more one-liter sample containers and preserved in 70 - 80% ethanol. Internal and external labels were completed for each container. Samples were tracked on chainof-custody forms and transported to the laboratory for sorting.

All sorting of the samples and taxonomic identifications were completed by the Aquatic Resources Center (ARC), Nashville, TN. After a sample is collected in the field, it is subsampled to reach a target number of organisms. The subsampling method involved spreading the entire sample on a Caton gridded tray (Caton 1991, Flotemersch et al. 2006) with 30 square grids (6 by 6 cm each), which allows isolation of physically defined amounts of sample material (leaf litter detritus, sticks, substrate particles) from the total sample and the separation/removal of the organisms from that material. A minimum of four grids were selected at random and sorted to completion until the target number of organisms $(100 \pm 20\%)$ was reached.

Benthic Taxonomy

Sample taxonomy using the methods of Boward and Friedman (2000) was performed by ARC, where specimens were identified primarily to genus level. In some cases, e.g., when individuals were early instars or had damaged or missing diagnostic morphological features, identification was left at more coarse levels, such as genusgroup, subfamily, or family level. Taxonomic data were received in Excel spreadsheets and loaded into the Ecological Data Application System, Version 3.2 (EDAS; Tetra Tech 1999). Functional feeding group, habit, and tolerance value designations were assigned to each taxon according to Merritt and Cummins (1996), Barbour et al. (1999), and Stribling et al. (1998). The tolerance value assigned to each taxon is based on its ability to survive and reproduce in the presence of chemical pollution, hydrologic alteration, or habitat degradation (Stribling et al. 1998, Bressler et al. 2005, 2006, Flotemersch et al. 2006).

Physical Habitat Rating (Methods for Calculation and Scoring)

Physical habitat quality was visually assessed at each site using two procedures: the USEPA Rapid Bioassessment Protocol (RBP; Barbour and Stribling 1994; Barbour et al. 1999) and the Maryland Biological Stream Survey (MBSS) Physical Habitat Index (PHI; Paul et al. 2003). The RBP evaluates 10 variables that describe instream physical characteristics. channel morphology, and riparian vegetation and stream bank structure. Each variable was scored as either optimal, suboptimal, marginal, or poor and given a corresponding score based on a 20-point scale (20 = best, 0 = worst), or 10-point scale for individual bank parameters. The following 10 variables were evaluated:

- epifaunal substrate/available cover
- pool substrate characterization
- pool variability
- sediment deposition
- channel flow status
- channel alteration

- channel sinuosity
- bank stability
- vegetative protection
- riparian vegetative zone width

The MBSS PHI is based on the USEPA RBP method but has been revised to incorporate variables that better characterize the physical complexity of Maryland Coastal Plain streams. The PHI evaluates physical habitat quality based on the following variables:

- bank stability
- instream woody debris and rootwads
- instream habitat quality
- epibenthic substrate
- shading
- remoteness

Water Quality

Conductivity, dissolved oxygen, pH, and temperature were measured at each site using a YSI 600QS sonde and 650 MDS display unit. This instrument was calibrated according to the specifications provided by the manufacturer, and the readings were recorded on a calibration log sheet.

Geomorphic Assessment

Geomorphic surveys were conducted at each site to determine the stream type of each reach as characterized by the Rosgen Stream Classification (Rosgen 1996). Measurements at each site included a pebble count, a cross sectional profile, and a simplified longitudinal profile.

Modified 100-particle Wolman Pebble Counts (Wolman 1954) were performed to determine the particle size distribution of the channel substrate. Ten transects were distributed throughout the 75m reach in proportion to the feature types (pool, glide, run, riffle) present. For example, if a reach was 60% pools and 40% glides, six transects would be allocated to pools while four would be placed in glide features. Each transect begins on one bank at approximate bankfull level and continues across the width of the active channel to

the opposite bankfull width. A total of 10 particles per transect were selected by hand (each particle is defined as a size of geologic substrate material within various classes: silt/clay, sand, gravel, cobble, boulder, and bedrock). To reduce sampler bias, each particle was chosen without the sampler looking in the stream at what was being collected (Harrelson et al. 1994). Each particle was chosen, measured, and recorded at evenly spaced intervals across the channel. If a reach was composed entirely of soft sediment (sand, silt/clay) and exhibited no clear variation in material size, the pebble count was not performed and the percentage of sediment types was visually However, a pebble count was estimated. performed at every fifth site.

Channel cross-sectional surveys were done to provide a coarse characterization of channel crosssectional area and changes to channel dimensions over time. After a thorough visual assessment of the channel characteristics, a representative section of the channel (preferably a transitional zone between feature types) was selected for analysis as the cross-section area. A tape measure was drawn between permanent monuments (4-ft sections of ¹/₂-inch diameter rebar) that were installed on each side of stream to record the location of each measurement. A GPS reading was taken at the primary monument (typically on the left bank facing downstream) and recorded on the data sheet. Elevation measurements were taken using a survey instrument and survey rod. Numerous measurements were taken across the entire width of the channel with the aim of characterizing as many features along the bank and streambed as possible including:

- Elevation of monuments
- Topography changes
- Top of each channel bank
- Bankfull indicators
- Edges of water
- Thalweg
- Depositional and erosional features

Using the data collected during the cross-sectional survey, a number of additional measures based on

bankfull indicators can be calculated, which allows further measurements to be made. These measures include:

- Bankfull Width (W_{bkf}) the channel width at bankfull elevation
- Bankfull Mean Depth (d_{bkf}) the mean depth of the bankfull channel
- Bankfull Cross-Sectional Area (A_{bkf}) the product of bankfull depth and bankfull mean depth
- Maximum Depth (d_{mbkf}) the maximum depth of the bankfull channel
- Width/Depth Ratio (W_{bkf}/d_{bkf}) the ratio of bankfull width divided by bankfull mean depth

Several additional measurements are then made based on the bankfull measures, which are necessary for determining the stream type of each reach. These measures include:

- Width of Floodprone Area (W_{fpa}) width of the channel at flood stage (two times maximum depth)
- Entrenchment Ratio (ER) the ratio of floodprone width divided by bankfull width

Additionally, sinuosity, the ratio of stream length to valley length, was determined by measuring the straight-line distance of the reach using a laser rangefinder or by running a measuring tape.

Data Analysis

Data Structure

Benthic macroinvertebrate, physical habitat, and water quality data were entered into EDAS, Version 3.2 (Tetra Tech 1999). This relational database allows for the management of location and other metadata, taxonomic and count data, raw physical habitat scores, the calculation of metric values, physical habitat and water quality rankings, and B-IBI values.

Land Use and Impervious Surface Evaluation

The County has an extensive collection of spatial data that was used to characterize land use and

impervious surface distributions and the age of development occurrence for the areas evaluated during this assessment. All geoprocessing work was done using ArcGIS 9.2. Individual land use coverages were developed for all PSUs for the drainage area upstream of each sampling point using a Countywide land cover coverage. Additionally, shapefiles of impervious surfaces were also created for each PSU and sampling point. This information is summarized for each sample station in *Appendix F*.

Both the impervious coverage and the land use coverage were developed from aerial photography collected in 2007. Both coverages are vector type data and were developed at a map scale of 1:2400.

Physical Habitat

The 10 RBP variable scores were summed to obtain a final habitat score. Site habitat condition was determined through comparison to a reference condition score. Because there were no RBP data for reference sites within Anne Arundel County, we compared to a reference condition based on similar studies from Prince George's County (Stribling et al. 1999). Narrative ratings that correspond to final RBP habitat scores (**Table 2**) express the potential of a stream or watershed to support a healthy biological community. These narrative ratings were adapted from Plafkin et al. (1989).

Table 2. EPA RBP Scoring

Score	Narrative
151 +	Comparable (to reference)
126 - 150	Supporting (aquatic life uses)
101 – 125	Partially Supporting
0 - 100	Non-Supporting

From: Stribling et al. 1999

For the PHI, the variables measured in the field were scored on a 100-point scale. Some scores were adjusted for watershed size. The individual scores were then summed and divided by the total number of variables (six) to yield a final PHI score, which was associated with a narrative rating (**Table 3**). Composite scores or values for primary sampling units were presented as means plus/minus a single standard deviation ($\bar{x} \pm 1$ s.d.).

Score	Narrative
81-100	Minimally Degraded
66-80.9	Partially Degraded
51-65.9	Degraded
0-50.9	Severely Degraded
E D 1 1	

Table 3.	MBSS	PHI	Scoring	Ranges.
----------	------	-----	---------	---------

From: Paul et al. 2003, Boward 2006

Biological Index Rating

The biological indicator is based on the Index of Biological Integrity (IBI; Karr et al. 1986) and characteristics uses of the benthic macroinvertebrate assemblage structure and function to assess the overall water resource condition. Benthic IBIs (B-IBI) were developed by the MBSS and calibrated for different geographic areas of Maryland (Stribling et al. In 2005, MBSS revised the B-IBI 1999). (Southerland et al. 2005). The revised benthic metrics calculated in this report were those selected and calibrated specifically for Maryland Coastal Plain streams. The seven metrics of calculated for each the benthic macroinvertebrate samples are:

- 1. *Total number of taxa*. The taxa richness of a community is commonly used as a qualitative measure of stream water and habitat quality. Stream degradation generally causes a decrease in the total number of taxa.
- 2. *Number of EPT taxa*. Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies) are generally sensitive to degraded stream conditions. A low number of taxa representing these orders are indicative of stream degradation.
- 3. *Number of Ephemeroptera Taxa.* Mayflies are generally sensitive to pollution and the number of mayfly genera in a sample can be an indicator of stream conditions, generally decreasing with increasing stress.

- 4. *Percent Intolerant to Urban*. This is the percentage of the benthic sample that is intolerant to urban stressors. This metric decreases with increased stream degradation.
- 5. *Percent Ephemeroptera.* The degree to which mayflies dominate the community can indicate the relative success of these generally pollution intolerant individuals in sustaining reproduction. The presence of stresses will reduce the abundance of mayflies relative to other, more tolerant individuals; although, some mayfly groups, such as several genera of the family Baetidae, are known to increase in numbers in cases of nutrient enrichment.
- 6. *Number of Scrapers.* Specialized feeders such as scrapers tend to be species that are more sensitive and are thought to be well represented in healthy streams, and tend to decrease with increasing stressors.
- 7. *Percent Climbers.* This is the percentage of the benthic sample living primarily on stem type surfaces. Climbers tend to decrease with increasing stressors.

Each metric was scored on a 5, 3, 1 basis (5 being the best, 1 being the worst) according to stream health. Metric scoring criteria for the 2005 index are listed in **Table 4**. IBI scores were calculated

Table 4. MBSS BIBI Metrics

Metric	Sco	ring Thresho	lds
	1	3	5
Number of Taxa	< 14	\geq 14 < 22	\geq 22
Number of EPT Taxa	< 2	$\geq 2 < 5$	≥ 5
Number of Ephemeroptera Taxa	< 1	$\geq 1 < 2$	≥ 2
Percent Intolerant to Urban	<10	\geq 10 < 28	≥28
Percent Ephemeroptera	< 0.8	≥ 0.8 < 11	≥11
Number of Scraper Taxa	< 1	≥ 1 < 2	≥ 2
Percent Climbers	< 0.9	\geq 0.9 < 8	≥ 8

From: Southerland et al. 2005

Table 5. MBSS BIBI (2005) Scorin

BIBI Score	Narrative Ranking	Characteristics
4.0 - 5.0	Good	Comparable to reference streams considered minimally impacted, biological metrics fall within the upper 50 percent of reference site conditions.
3.0 - 3.9	Fair	Comparable to reference conditions, but some aspects of biological integrity may not resemble the qualities of minimally impacted streams.
2.0 - 2.9	Poor	Significantdeviationfromreferenceconditions,indicatingsome degradation.Onaverage,biologicalmetricsfallbelowthe10 th percentileofreferencereferencesite values.
1.0 - 1.9	Very Poor	Strong deviation from reference conditions, with most aspects of biological integrity not resembling the qualities of minimally impacted streams, indicating severe degradation. On average, most or all metrics fall below the 10 th percentile of reference site values.

by summing the nine metric scores for each site, and dividing by the number of metrics (7). Using the format established by MBSS, the resulting value was then compared to the index scoring criteria for translation into narrative categories (**Table 5**; Southerland et al. 2005). If the total number of organisms in a sample was less than 60, metrics were not calculated (D. Boward, personal communication). Sites with < 60 organisms were rated as "Very Poor" unless there was evidence that this represented a natural condition.

9

Composite scores for primary sampling units were presented as means plus/minus a single standard deviation ($\bar{x} \pm 1$ s.d.).

Water Quality

Water quality data were compared to Maryland water quality standards for Use I streams. Use I streams have designated uses for water contact recreation and protection of nontidal warm water aquatic life. Water quality standards for these streams have been established in the Code of Maryland Regulations (COMAR, **Table 6**). Composite values for individual sampling units are means plus/minus a single standard deviation $(\bar{x} \pm 1 \text{ s.d.})$.

Table 6.Code of Maryland (COMAR) WaterQuality Standards.

Parameter	Standard
pH (S. U.)	6.5 to 8.5
Dissolved Oxygen (mg/L)	Minimum of 5 mg/L
Conductivity (µS/cm)	[No state standard]
Temperature (°C)	Maximum of 32°C (90°F) or ambient temperature, whichever is greater

Source: COMAR 26.08.02.03-3

Geomorphic Assessment

Geomorphic field data were compared to regional relationships of bankfull channel geometry developed by the USFWS for streams in the Maryland Coastal Plain (McCandless 2003). This comparison is a crucial step in verifying whether bankfull field determined estimates are appropriate or within a range of known values for drainage basins of similar size. Determination of bankfull indicators is difficult in the urbanized sampling units like Sawmill Creek. To be cautious, field staff would typically identify two or more possible topographic features within the cross section as possible bankfull indicators. Occasionally, changes to the field-called bankfull indicator were made in the office if, based upon an inspection of the plotted cross section and photographs, another identified indicator or obvious slope break or other observable feature gave better agreement with the regional relationships that have been well established in this physiographic region. However, no changes to the field-derived call were made if there was no obvious other potential indicator observable in the cross section and only one bankfull indicator was called in the field or if there was reasonable $(\pm 15\%)$ of the expected value for the drainage area upstream of the sample point) agreement between the original call and the Coastal Plain regional relationships.

After field data were compared to the regional relationships and determined to be accurate estimates of the bankfull channel parameters, the longitudinal profile survey, the cross section survey, and the pebble count data were analyzed for each assessment site. These data were then used to identify each stream reach as one of the stream types categorized by the Rosgen Stream Classification (Rosgen 1996). In this methodology, classification streams are categorized based on their measured field values of entrenchment ratio, width/depth ratio, sinuosity, water surface slope, and channel materials according to the table in *Appendix B*:

Rosgen Stream Classification. As shown in Appendix B, the Rosgen Stream Classification categorizes streams into broad stream types, which are identified by the letters, A, G, F, B, E, C, D, and DA. Additionally, when a numeric code for dominant bed material is added, a total of 41 unique types exist in this scheme. Details about the stream types listed here can be found in Rosgen (1996).

The most entrenched streams are the A, G, and F channels. In these streams, flood flows are confined to their channels with little relief provided by a floodplain. Type A streams generally occur in narrow high relief valleys and are generally narrow, deep, confined, and entrenched streams with cascading step-pools and low sinuosity. These streams can be very stable if the bed material consists mainly of bedrock or boulders. Type G streams occur in moderate gradient valleys and are generally narrow and deep. These streams also have step-pool systems, but are generally more sinuous and gully-like than A streams. G streams are considered unstable and commonly have grade control problems and high bank erosion rates. Type F streams occur in more gentle gradients and have higher width/depth ratios than A and G streams. F streams are generally entrenched in highly weathered materials that make these streams laterally unstable. These streams usually have riffle-pool morphologies, greater sinuosity than A and G streams, and high bank erosion rates.

Type B streams are moderately entrenched. These streams have better floodplain connectivity than the entrenched A, G, and F streams. B streams are found in narrow valleys of moderate relief and generally have very stable planforms, profiles, and banks. Riffles and rapids dominate these channels with intermittent pools.

The least entrenched single thread channels are the type E and C streams. Type E streams are commonly narrow and deep but have very wide and well-developed floodplains. These streams are highly sinuous with well-vegetated banks, a riffle-pool morphology, and low gradients; occurring in broad valleys and meadows. Ε streams are generally very stable, efficiently conveying flood flows and transporting sediment. Type C streams have wider and shallower channels with well-developed floodplains and very broad valleys. These streams have riffle-pool morphology, point bar depositional features, and well-defined meandering channels.

Type D and DA streams are multi-thread streams. These stream types are very uncommon in the mid-Atlantic and are very rare in Anne Arundel County. None were observed during this assessment and so are not discussed further.

To facilitate the data analysis and classification work, an Excel spreadsheet developed by the Ohio Department of Fish and Game's Division of Soil and Water Conservation specifically designed for Rosgen stream classification was used to analyze the channel data collected and help classify the stream reaches.

For the E type channels observed during this assessment, it was possible to compare the values of the various parameters measured to the values obtained by Starr et al. (2009) for E type reference reaches in the Western Coastal Plain. A statistical comparison was made using a t-test procedure to compare the mean values of width to depth, entrenchment, and sinuosity of the study group to the reference group.

Because the goal of the geomorphic assessment component of this study is to support the biological assessments, a full set of geomorphic parameters was not collected. Therefore, the data have certain limitations that should be noted:

- An assessment reach length of between 10 and 20 bankfull channel widths is typically required for classification purposes. Depending upon the location of random biological site, some reaches met this criterion while others did not. Consequently, while it is unlikely that a change in stream type would occur using a properly sized assessment reach, any classifications reported here should be considered subject to refinement during future reassessment work.
- Typically, stream classification using the Rosgen methodology (Rosgen 1996) is best performed on riffle or step cross sections. Many of the 75-meter reaches assessed in this study did not contain riffles, although transition reaches between meanders were frequently identified and used for cross section placement.
- Pebble count data were collected for stream classification purposes only and are not appropriate for use in hydraulic calculations of bankfull velocity and discharge. This is particularly the case for the many sand bed channels in the study area, where data on the dune height would be used instead of the 84th percentile particle size, or D₈₄, in hydraulic calculations. Dune height data were not collected for this study.

• No detailed analyses of stream stability were performed for this study. Statements referring to stream stability are based on observations and assumptions, which were founded on fundamental geomorphic principles. Conclusive evidence of the stability of the sampling units assessed could only be obtained after detailed watershed and stream stability assessments were performed.

A summary of the stream types identified for the streams in this study is included in *Appendix C*.

Results and Discussion

This section first makes comparisons about conditions across all sampling units. Then, each sampling unit is discussed individually. A thorough discussion of data quality pertaining to biological results is included in *Appendix D*. A listing of taxa sampled and their characteristics are in *Appendix E*.

Comparisons among Sampling Units

The following sections describe biological conditions, habitat quality, and geomorphologic results for selected subwatersheds. The probability-based site selection process (Hill and Stribling 2004) allows use of average results in each PSU to describe typical conditions for all streams within the subwatershed, even in those streams where no data were collected. While individual streams could certainly be found that assess as either better or worse than the typical conditions, probabilistic sampling is the best way to characterize all streams and summarize the results with known uncertainty. Table7 summarizes biological and habitat conditions for each PSU.

Biological Assessment Summary

Overall, the BIBI scores throughout the sampling units were variable, with an approximately equal portion of the sites falling within the "Poor" (44%) and "Very Poor" (46%) categories (**Figure 2**). Eight percent of the sites were rated as "Fair," and 2% rated as "Good." Three of the five sampling units had BIBI scores that put them in the "Very

Table 7. Summary of BIBI and habitat scores across sampling units. For each primary sampling unit, N = 10 sites.

Primary Sampling Unit	Average BIBI Score ±SD / Condition Narrative	Average EPA RBP Habitat Score ±SD / Condition Narrative	Average MBSS PHI Score ±SD / Condition Narrative
Sawmill Creek	1.92±0.37 Very Poor	108.9±18.2 Partially Supporting	57.7±16.3 Degraded
Rhode River	1.97±0.34 Very Poor	98.5±16.9 Partially Supporting	62.5±9.0 Degraded
West River	1.86±0.30 Very Poor	114.5±9.8 Partially Supporting	70.1±5.9 Partially Degraded
Rock Branch	2.43±0.97 Poor	104.9±11.4 Partially Supporting	67.8±6.8 Partially Degraded
Cabin Branch	2.31±0.51 Poor	114.3±16.8 Partially Supporting	66.6±6.4 Partially Degraded

Poor" category, and the other two, in "Poor" (**Table 7**). Rock Branch and Cabin Branch (PSU-20 and 23, respectively) had the highest mean B-IBI scores, 2.43 and 2.31. The Sawmill Creek, West River, and Rhode River PSUs had the lowest score, all ranging around 1.9. At many of the sites, the benthic macroinvertebrate assemblage was dominated by midges (Diptera: Chironomidae). Blackflies (Diptera: Simuliidae), sowbugs (Isopoda: Asellidae), worms

(Oligochaeta) and riffle beetles (Coleoptera: Elmidae) were also abundant at several of the sites.

Habitat Assessment Summary

Across the five sampling units, physical habitat quality was assessed as somewhat degraded. RBP narratives for mean scores were "Partially Supporting" for all PSUs (**Table 7**). Twelve percent of the individual sites sampled had habitat quality capable of "Supporting" aquatic life uses. Mean PHI values classify the Sawmill Creek and Rhode River PSUs as "Degraded" while Cabin Branch, West River, and Rock Branch were judged as "Partially Degraded" (**Table 7**). Over all PSUs, 2% of the individual sites were assessed as having minimal physical habitat disturbance (**Figure 3**).

Water Quality Assessment Summary

There were no violations of the COMAR temperature or dissolved oxygen standards, which is not surprising considering the sampling schedule. Temperature observations made in March and April are not likely to show high temperature stress. The highest temperature recorded was 14.6°C, in an unnamed tributary to Cabin Branch. All dissolved oxygen readings were above 5.9 mg/L, which is above the 5 mg/L standard, but which could be expected to be higher in the late winter and early spring.

There is no state standard for conductivity, but only one site had a reading greater than 1000 μ S/cm, a site on Sawmill Creek. All of the remaining readings were <600 μ S/cm. More than 80% of the pH readings fell between 6.0 and 7.6, with most of the more acidic values being from the Rhode River.

Geomorphic Assessment Summary

The E type and G type stream channels were the dominant stream types found within the sampling 7units. As shown in **Figure 4**, 36% of all sites assessed were classified as E channels while 32% fell into the G classification. B and C channel types both occurred in 12 and 10% of sites,

respectively, while F channels made up 2% of sites assessed. Approximately 8% of the sites were excluded from analysis due to site conditions that violated basic requirements associated with applying the Rosgen classification system.

Stream types were not uniformly distributed over the sampling units, but the E type was present in 4 of 5 units with its most frequent occurrence (70% of sites) in Sawmill Creek. The G type was found most frequently in the Rock Branch (60%) and Cabin Branch (50%) PSUs, but was also observed in Rhode and West River PSUs. The single F type was found in Rock Branch while the B type was mostly found in the West River.

All of the channels had sand substrates with an average D50 observed across the PSUs of 0.26 mm. No clay or gravel-dominated channels were observed. Stream slope was very low in the assessment reaches. The average slopes for all reaches assessed were approximately 0.57%. Slopes were lowest in the Sawmill Creek (0.41%) and highest in the Rock Branch (0.91%) sampling units. Excluding two reaches, all B and G types were of the Bc and Gc type, meaning that these reaches had a slope of less than 2%.

Primary Sampling Unit Discussions

This section summarizes conditions found within each sampling unit. Discussions of potential impacts to observed habitat and biological conditions are discussed here. For site-specific data and assessment results see *Appendix F*.

When appropriate, conditions within individual subwatersheds are discussed. When site-specific data are not available within a unit, the unit-wide results characterize basic conditions of all streams throughout the unit.

Sawmill Creek (04)

The Sawmill Creek watershed sampling unit is located in the northern part of the County (**Figure 1**), with site drainage areas ranging in size from 68 – 4,461 acres. The ten sample locations within this PSU (**Figure 5**) are on tributaries to the Sawmill Creek mainstem and the mainstem itself.

Aquatic Habitat

Half of the Sawmill Creek streams were rated as "Partially Supporting" by the RBP method, 30% "Non-Supporting", and 20% "Supporting" (Figure 6). The MBSS PHI results showed no (0%) of the streams as "Minimally Degraded," 40% were "Partially Degraded," and 20% as "Degraded" and 30% were "Severely Degraded." The mean RBP habitat score was 108.9±18.2 (Table 7), with individual sites ranging from 69 to Streams with the worst RBP scores had 134. altered channels or unstable banks, as well as sedimentation and disturbed riparian zones. The mean PHI score was 57.7±16.3, with individual sites ranging from 37.3 - 80.4. The site scoring lowest on the PHI had relatively low scores for remoteness, trash, and woody debris. One site was not scored using the PHI.

Benthic Macroinvertebrates

Site sampled rated either "Poor" (50%) or "Very Poor" (50%) (**Figure 7**); no sites were rated as either "Good" or "Fair." The mean B-IBI score was 1.92 ± 0.4 (**Table 7**), and scores at individual sites ranged from 1.29 (very poor) to 2.43 (poor). The lowest B-IBI scores occurred at two sites: 04-

06 and 04-07. At site 04-06, the sample was dominated by the worm (Enchytraeidae) and the midges (Cricotopus/Orthocladius). Combined, these groups made up 84% of all insects collected in the sample. Similarly, site 04-07 was dominated by stressor tolerant organisms, with worms, nematodes, and midges comprising over 83% of the sample (Enchytraeidae, Nemata, Cricotopus/ Orthocladius, and Tubificinae). The site with the highest B-IBI score, 04-01, was dominated by midges (68%), with ³/₄ of those being Diplocladius (Chironomidae). However. the sample also exhibited Stenelmis and Caenis, a riffle beetle (Coleoptera: Elmidae) and a mayfly (Ephemeroptera: Caenidae), respectively. For site-specific data and assessment results see Appendix F.

Water Quality

All water quality variables were within acceptable ranges for individual site observations and for mean values (**Table 8**). Water temperature ranged from $4.7-13.5^{\circ}$ C; conductivity from 248-1,147µS/cm; and DO from 7.6-12.5 mg/L.

Table 8. Average water quality values - Sawmill Creek

Value \pm Standard Deviation				
Temperature* Conductivity* D.O.*				
$8.6 \pm 2.9 \qquad 465.5 \pm 255.3 \qquad 10.8 \pm 1.4$				
*Units: Temp. (°C), Cond. (µS/cm), D.O. (mg/L)				

Geomorphic Assessment

The E and C stream types were observed in this sampling unit, with the E type being most prevalent at 70% of the total observed. As shown in **Figure 8**, the C type was observed at two sites while one site was not classified due to the wetland nature of the reach.

All of the reaches assessed in this sampling unit had sand bottoms; the average D50 observed for this PSU was 0.27 mm. Slopes ranged from a high of almost 1.2% to a low of 0.02%, with an average of 0.41% across all sites. As in the other sampling units, regardless of stream type, streams here were straighter than expected for particular types.

Figure 5. Sampling locations in the Sawmill Creek primary sampling unit (04).

PSU.

Sinuosities of between 1.0 and 1.2 were common in Sawmill Creek. In general, the E reaches assessed were wider and deeper compared to average values for similar types and occupied more of the valley floor.

Statistical comparisons were made between E type reference reaches as described in Starr et al. (2009) and the E types found in Sawmill. Entrenchment ratios (ERs) for E types in Sawmill were significantly different (p < 0.05), with an average around 10.7 observed in Sawmill compared to reference values of around 23.5. Sinuosity was also very different (p<<0.01) compared to reference values—E types were much straighter in the Sawmill PSU (avg.=1.06 vs. 1.39 at reference sites). There were no significant differences regarding the W/D ratio. However, Rosgen (1996) reports a mean E5 W/D ratio of 5.8 and the average for local E type reference reaches is around 9.2 (Starr et al. 2009), while the E reaches measured in this sampling unit averaged around 13.

Overall, these circumstances may indicate that streams in this PSU are finished incising into their floodplains and are now adjusting laterally. However, from the data collected here it is unclear if the downcutting has ceased. Repeated measurements over time at these sites ultimately would provide insight into the evolutionary trajectory of these streams and the surrounding riparian areas.

Rhode River (13)

The Rhode River sampling unit is located in the southeastern part of the County (**Figure 1**), with site drainage areas ranging from 140 - 674 acres. The ten sample locations in the watershed (**Figure 9**) are located on tributaries to the Rhode River.

Aquatic Habitat

None of the streams in the Rhode River PSU have physical habitat conditions that are "Comparable" to reference (RBP) and none that are "Minimally Degraded" (PHI) (Figure 10). For the RBP assessment, 60% of the streams were rated "Non-Supporting," and 40% were "Partially Supporting." The PHI further rated 40% "Partially Degraded," 40% as "Degraded," and 10% "Severely Degraded." The mean RBP habitat score was 98.5 ± 16.9 , with individual sites ranging from 68 (Non-Supporting) - 124 (Partially Supporting). The mean PHI rating was 62.5 ± 9.0 , with individual sites ranging from 49.8 (Severely Degraded) to 78.5 (Partially Degraded). One site in this PSU was not evaluated using the PHI.

Benthic Macroinvertebrates

All of the sites in the Rhode River Sampling Unit rated as either "Very Poor" or "Poor," (Figure 11). The mean B-IBI score was 1.97 ± 0.34 (Table 7), with scores at individual sites ranging from 1.57 to 2.43. Four of the five sites that rated as "Very Poor" were dominated by midges (Chironomidae), representing 24-78% of the samples; the fifth "Very Poor" site had approximately 9.5% midges, but was dominated instead by the blackfly *Stegopterna* (Diptera: Simuliidae), considered by MBSS to be a relatively stressor-sensitive taxon in urban systems. For site-specific data and assessment results see *Appendix F*.

Water Quality

All water quality variables were within acceptable ranges for individual site observations and for mean values (**Table 9**). Water temperature ranged from 3.3 - 13.5 °C; conductivity from 81 - 307 µS/cm; and DO from 8.6-13.8 mg/L.

Table	9.	Average	water	quality	values	-
Rhode	Rive	r				

Value \pm Standard Deviation				
Temperature* Conductivity* D.O.*				
8.5 \pm 2.6 163.2 \pm 63.8 11.2 \pm 1.6				
*Units: Temp. (°C), Cond. (µS/cm), D.O. (mg/L)				

Geomorphic Assessment

E stream types were most frequently observed in this sampling unit, making up 40% of observed channels. Additionally, as shown in **Figure 12**, the G type was observed at 30% of sites while the C type was observed at 20% of reaches. One site (13-07) was not classified due to the highly impacted condition of the reach.

Like the other assessed PSUs in 2008, the Rhode River is dominated by sandy substrates. The average D50 observed was 0.22 mm. Slopes ranged from a high of almost 1% to a low of 0.10%, with an average of 0.46% across all sites.

As in the other sampling units, and regardless of stream type, streams here were frequently straighter than expected for particular types. Reaches assessed in this PSU had an average sinuosity of 1.1.

In general, the G reaches were comparable to mean values from Rosgen (1996). For example, the mean G5 W/D ratio is 7.2 while the average for Rhode River G types was 8.03. Similar agreement was observed for both ER and sinuosity.

Figure 9. Sampling locations in the Rhode River primary sampling unit (13).

Comparisons of the observed E reaches to the reference reach values developed by Starr et al. (2009) showed that significant differences exist in both sinuosity (p<0.001) and width to depth ratio (p~0.05). E reaches were straighter and narrower than expected in comparison to reference conditions. No significant relationship was observed for entrenchment ratio.

Overall, the occurrence of unstable G type reaches coupled with the narrower and straighter E type observed may indicate that streams in this sampling unit are incising into their floodplains in response to historic and/or contemporary perturbations. However, the ultimate evolutionary trajectory of physical condition in this PSU is currently unclear. Repeated measurements over time at these sites ultimately would provide better insight into the evolutionary trajectory of these streams and the surrounding riparian areas.

West River (14)

The West River sampling unit is located in the southeastern part of the County (**Figure 1**), with site drainage areas ranging from 80 - 1,390 acres. Nine sample locations in the watershed (**Figure 13**) are on the mainstem or tributaries of the West River.

Aquatic Habitat

The RBP physical habitat assessments showed that 80 percent of streams in the West River PSU are "Partially Supporting," with 10 percent rated "Supporting" or "Non-Supporting" (**Figure 14**). The mean RBP habitat score was 114.5±9.8 (**Table 7**), with site-specific scores ranging from 100 to 129 (Partially Supporting). Of the two sites that rated lowest, both had highly disturbed riparian vegetation, lacked instream physical complexity, and apparently had undergone channel straightening

One site (10%) had an MBSS PHI score of "Minimally Degraded" (**Figure 14**). Most sites (60%) were "Partially Degraded" while three (30%) were classified as "Degraded." The mean PHI score was 70.1 ± 5.9 , and individual sites ranged from 63.9 - 82.2.

Benthic Macroinvertebrates

Seventy percent of the sites in the West River PSU rated as "Very Poor," (the highest percentage of all the PSUs assessed) and 30% rated as "Poor" (Figure 15). The mean B-IBI score was $1.86 \pm$ 0.30 (Table 7)—the lowest observed during this assessment-with scores at individual sites ranging from 1.57 to 2.43. Seven sites rated as "Very Poor"; most were dominated by midges (Chironomidae: Chaetocladius, Diplocladius, Hydrobaenus), blackflies occasionally (Simuliidae: Stegopterna, Prosimulium), segmented worms (Oligochaeta: Enchytraeidae), Although never and nematodes (Nemata). dominant in samples, many of these sites also had stoneflies and caddisflies represented Limnephilidae: Amphinemura; (Nemouridae: Ironoquia). The other three sites, rated as "Poor," had similar sample makeup, but typically a higher dominance of stressor tolerant Chironomidae. For site-specific data and assessment results see *Appendix F*.

Water Quality

All water quality variables were within acceptable ranges for individual site observations and for mean values (**Table 10**). Water temperature ranged from $3.1 - 10.8^{\circ}$ C; conductivity from 56 - 199 μ S/cm; and DO from 9.2 -13.8 mg/L.

Table 10.	Average	water	quality	values	-
West River					

Value <u>+</u> Standard Deviation				
Temperature* Conductivity* D.O.*				
8.1 ± 2.4	151.2 ± 44.2	11.1 ± 1.6		
*Units: Temp. (°C), Cond. (µS/cm), D.O. (mg/L)				

Geomorphic Assessment

The E stream type was the most prevalent in the West River, found at 40% of assessment reaches in the PSU (**Figure 16**). The B type was observed at 30% of sites while the G type was observed at 20% of sample sites. One site (14-16A) was not included in this analysis due to the presence of culvert comprising approximately half of its length.

Sandy materials made up the stream bottoms in this PSU. The average D50 observed was 0.24 mm. Slopes ranged from a high of 1.6% to a low of 0.06%, with an average of 0.58% across all sites.

In general, the characteristics of the E reaches in this PSU were comparable to the E type reference reach values measured by Starr et al. (2009). No statistical differences were observed in ER and W/D ratios between West River sites and reference reach averages. Only sinuosity showed a

Figure 13. Sampling locations in the West River primary sampling unit (14).

significant difference (p << 0.001) between West River sites (average = 1.06) versus reference reach sites (average = 1.39), meaning that E streams were straighter than expected compared to reference conditions.

The B streams in the West River were somewhat narrower (average W/D ratio = 11.5 versus 16.6 for typical G5 types; Rosgen 1996). Additionally, B types in West River were straighter (average sinuosity = 1.0) than typical B5 channels (Rosgen 1998 = 1.38 for the B4 type—B5 means not provided).

Overall, the prevalence of stable E and B types may mean that streams in this PSU are returning to some type of dynamic equilibrium. However, the ultimate evolutionary trajectory of physical condition in this PSU is currently unclear. Repeated measurements over time at these sites ultimately would provide better insight into the evolutionary trajectory of these streams and the surrounding riparian areas.

Rock Branch (20)

The Rock Branch sampling unit is the southwestern part of the County (**Figure 1**), and abuts the Rhode River sampling unit. Sampling sites in Rock Branch have individual drainage areas ranging from 94 - 3,056 acres. The ten sample locations in the watershed (**Figure 17**) are on the mainstem or tributaries of Rock Branch.

Aquatic Habitat

The RBP physical habitat quality assessments show 50 percent of the streams in Rock Branch as "Partially Supporting" and 40 percent as "Non-Supporting" (**Figure 18**). The mean RBP value is 104.9 ± 11.4 (**Table 7**) with values ranging from 91 - 131. Of the sites with "Non-Supporting" habitat, there was consistent channel instability, lack of undisturbed riparian vegetation, and minimal pool complexity and epifaunal substrate. The PHI scored the majority of sites (60%) as "Partially Degraded." while 40% were rated "Degraded." The mean PHI score was 67.8 ± 6.8 , and the range was from 58.8 - 78.5.

Benthic Macroinvertebrates

Forty percent of the sites in the Rock Branch PSU rated as "Very Poor," 30% rated "Poor," 20% "Fair", and 10% "Good" (Figure 19). This PSU had the only site rated "Good" during the 2008 assessment. Rock Branch also had the highest mean B-IBI score at 2.43 ± 0.97 (**Table 7**), with scores at individual sites ranging from 1.29 to 4.43. The one site that rated as "Good", site 20-02, an unnamed tributary to Rock Branch, was dominated by the midge Tanytarsus (Diptera: Chironomidae) and 2 stoneflies, Amphinemura (Plecoptera: Nemouridae, Haploperla and Chloroperlidae). Dominant taxa at the sites rating as "very poor" were midges (Chaetocladius, Diplocladius, Hydrobaenus, and Tvetenia). blackflies (Stegopterna, Prosimulium [Diptera: Simuliidae]). Site 20-06, although rated as "fair" by the B-IBI, had a very diverse sample with 41 taxa, and was dominated by craneflies (Pilaria [Tipulidae]), caddisflies (Diplectrona [Hydropsychidae], and beetles (Anchytarsus [Ptilodactylidae]). For site-specific data and assessment results see Appendix F.

Water Quality

In the Rock Branch subwatershed, all water quality variables were within acceptable ranges for individual site observations and for mean values (**Table 11**). Water temperature ranged from $3.8 - 11.6^{\circ}$ C; conductivity from 78 - 574 µS/cm; and DO from 7.1 - 13.8 mg/L.

Table	11.	Average	water	quality	values	-
Rock E	Branci	h				

Value \pm Standard Deviation				
Temperature* Conductivity* D.O.*				
8.3 \pm 2.4 203.5 \pm 43.2 11.8 \pm 2.0				
*Units: Temp. (°C), Cond. (µS/cm), D.O. (mg/L)				

Geomorphic Assessment

The G stream type was the most prevalent in the Rock Branch PSU, found at 60% of assessment reaches. As shown in **Figure 20**, the B type was observed at 20% of sites while the C and F types were observed at 10% of sample sites. No E types were observed in this PSU.

Sand bottom channels dominate in this PSU. The average D50 observed was 0.26 mm. Slopes ranged from a high of 2.8% (at station 20-08, the highest observed amongst all 2008 sites) to a low of 0.28%, with an average of 0.91% across all sites.

In general, the G reaches in this PSU were somewhat different compared to mean values from Rosgen (1996). G streams in Rock Branch were somewhat wider and active channels occupied more of the valley floor than typical G types. For example, the mean G5 W/D ratio is 7.2 while the average for Rock Branch G types was 9.0 (Rosgen 1996). The ER for Rock Branch G streams averaged 1.4 while Rosgen (1998) reports an average of 1.17 for G5 streams. Sinuosity matched fairly well with expected values (1.1 observed versus 1.25 typical).

Figure 17. Sampling locations in the Rock Branch primary sampling unit (20).

Overall, the prevalence of unstable G type may mean that streams are incising into their historic and/or floodplains in response to contemporary perturbations. However, the increased W/D and ER averages suggest that these reaches may have finished downcutting, with lateral adjustments beginning to manifest themselves in these streams. The ultimate evolutionary trajectory of physical condition in this PSU is currently unclear. Repeated measurements over time at these sites ultimately would provide better insight into the evolutionary trajectory of these streams and the surrounding riparian areas.

Cabin Branch (23)

The Cabin Branch sampling unit is on the far southwestern border of the County (**Figure 1**). Sampling sites in Cabin Branch have individual drainage areas ranging from 42 - 10,807 acres, and are located on unnamed tributaries to Cabin Branch (**Figure 21**). It should be noted that one site (23-10) has some of its contributing drainage located within Calvert County.

Aquatic Habitat

The RBP physical habitat quality assessments show 60 percent of the streams in Cabin Branch as "Partially Supporting" and 20 percent each as "Supporting" and "Non-Supporting" (Figure 22). The mean RBP value is 114.3 ± 16.8 (**Table 7**) with values ranging from 94 - 148. Two of the reaches were rated as having supporting habitat, and showed good habitat complexity with overall channel stability. The other reaches rated as partially "Supporting" and "Non-Supporting" and had strong indications of channel instability, eroding banks, disturbed riparian vegetation, and heavy sediment deposition. The PHI indicated "Partially Degraded" conditions in 40 percent of sites and "Degraded" conditions in an additional 40 percent, with 20% not assessed with this method. The mean PHI score was 66.6 ± 6.4 and the range was from 58.6 - 77.3.

Benthic Macroinvertebrates

Sixty percent of the sites in the Cabin Branch PSU rated as "Poor," and 20 percent each rated as "Very Poor" and "Fair" (Figure 23). The mean B-IBI score was 2.31 ± 0.51 (Table 7), with scores at individual sites ranging from 1.57 to 3.29. The lowest B-IBI scores occurred at two sites, 23-03 and 23-07. The former had a B-IBI score of 1.57 and was dominated by worms (Oligochaeta: Nais) and midges (Chironomidae: Diplocladius and Cricotopus/Orthocladius). The latter was also dominated by midges, including the genera mentioned above, plus Chaetocladius. The rest of the sites rated as "Fair" and "Poor" also had high proportions of midges, and numbers for the "Total taxa" metric ranging from 19-38. For sitespecific data and assessment results see Appendix **F**.

Water Quality

In the Cabin Branch PSU, all water quality variables were within acceptable ranges for individual site observations and for mean values (**Table 12**). Water temperature ranged from $7.8 - 14.6^{\circ}$ C; conductivity from 97 - 233 µS/cm; and DO from 6.7 - 11.7 mg/L.

Table 12.Average water quality values -Cabin Branch

Value \pm Standard Deviation				
Temperature* Conductivity* D.O.*				
10.2 ± 2.0 172.5 ± 43.2 9.6 ± 2.4				
*Units: Temp. (°C), Cond. (µS/cm), D.O. (mg/L)				

Geomorphic Assessment

The G stream type was the most frequently observed type in this sampling unit, making up 50% of observed channels. As shown in **Figure 24**, the E type was observed at 30% of sites while the B type was observed at 10% of reaches. One site (23-10) was not classified due to the highly impacted condition of the reach.

Sandy substrates dominated in this PSU. The average D50 observed was 0.29 mm. Slopes ranged from a high of almost 1.5% to a low of 0.05%, with an average of 0.47% across all sites.

As in the other sampling units, regardless of stream type, streams here were frequently straighter than expected for particular types. An average sinuosity of 1.23 was observed in Cabin Branch.

In general, the G reaches were comparable to mean values from Rosgen (1996). For example, the mean G5 W/D ratio is 7.2 (Rosgen 1996) while the average for Cabin Branch G types was also around 7.2. Similar results were observed

Figure 21 - Sampling locations in the Cabin Branch primary sampling unit.

for ER and sinuosity. There were only two E channels observed in this PSU, so no comparisons to the reference reach values developed by Starr et al. (2009) were attempted.

Overall, the prevalence of unstable G type reaches indicates that streams in this sampling unit are incising into their floodplains in response to historic and/or contemporary perturbations. However, the ultimate evolutionary trajectory of physical condition in this PSU is currently unclear. Repeated measurements over time at these sites ultimately would provide better insight into the evolutionary trajectory of these streams and the surrounding riparian areas.
Conclusions and Discussion

As there are typically multiple stressors affecting stream biota, it is often difficult to isolate single stressors that are the direct cause of biological impairment (Norton et al. 2000, USEPA 2000). We do not expect strong correlations of biological condition with any composite measure of physical habitat quality (such as the RBP or the PHI), or individual physical or water chemistry characteristics (such as median substrate particle size, width of undisturbed riparian vegetation, or dissolved oxygen), due to the fact that both synergistic and antagonistic relationships exist among stressors that are not fully understood. For example, two sites, one in the Sawmill Creek PSU (04-12A) and one in the Cabin Branch PSU (23-10), were rated as "Poor" for biology (B-IBI) and "Supporting" for habitat (RBP) (Table 13). This is an indication that stressors unrelated to habitat are causing biological degradation in this sampling unit. Table 14 similarly arranges biological assessment narratives against those for PHI.

Stability and complexity of physical habitat are necessary for a healthy biota, among other factors. Poor water quality, availability of food resources, and invasive species can impair the ability of stream organisms to survive and reproduce. Assuming that physical habitat quality is the principal factor defining the biological potential of a stream, we can make inferences about streams in which the biological indicators are better or worse than expected. Biological signals that are better than expected may be due to something like nutrient enrichment while those that are worse than expected may be depressed by stressors such as water chemistry contaminants.

Table 15 shows those sites for which the B-IBI is higher or lower than expected for the habitat assessment. Only those sites for which the biology-habitat relationship was true for both habitat quality indicators are shown.

Table 13.	Comparison	of	biological	scores	to	EPA
RBP habita	t condition.					

EDA DDD BIBI Score						
Habitat Scores	Good	Fair	Poor	Very Poor		
Comparable						
Supporting		20-10 23-13A	04-12A 23-10	04-20A 14-06		
Partially Supporting	20-02	23-01	04-10 04-15A 13-03 13-05 13-12A 14-02 14-09 14-14A 20-05 20-07 23-02 23-04 23-05 23-06 23-09	04-07 04-08 04-13A 13-06 14-03 14-07 14-10 14-12A 14-16A 20-01 20-03		
Non- Supporting		20-06	04-01 04-09 13-04 13-07 20-08	04-06 13-08 13-11A 13-13A 13-14A 14-01 20-04 20-11A 23-03 23-07		

Green cells contain stations where the biological community was less impaired than the habitat scores would predict. **Orange** cells contain stations where biological community matched available habitat.

Pink cells contain stations where the biological community was more impaired than the habitat scores would predict.

Sites in **Bold** type have a departure of two or more condition classes from expected outcome (e.g.- "Very Poor" biology found in reach with "Supporting" habitat).

MRSS PHI	BIBI Score			
Score	Good	Fair	Poor	Very Poor
Minimally Degraded				14-06
Partially Degraded		20-06 20-10 23-13A	04-12A 04-15A 13-03 13-05 13-07 14-09 14-14A 20-07 23-06 23-09	04-07 04-13A 13-14A 14-03 14-07 14-10 14-12A 14-16A 20-01 20-03 20-04 23-07 23-04
Degraded	20-02		04-01 13-04 14-02 20-05 20-08 23-02 23-04 23-05 23-10	04-08 13-08 13-11A 13-13A 23-03 14-01 14-10 20-11A
Severely Degraded	under Tab l	e 13 regardi	04-09 04-10 13-12A	04-06

Table 14. Comparison of biological scores to MBSSPHI habitat condition.

type. The following stations do not have MPHI scores: 04-20A,13-06,23-01,23-03

Using the criterion described above, nearly one quarter of the sample stations show indications of water quality impairments. In particular, 6 of 10 sites from the relatively undeveloped West River PSU are listed in **Table 15**. In the Sawmill PSU, a highly urbanized watershed, 40% of sites had biota-habitat mismatches.

Table	15.	Rea	ches	for	wł	hich	the	рa	iired
assessi	ments	of	biol	logic	al	con	ditio	п	and
physic	al hab	itat d	quali	ty in	dice	ate t	he p	ote	ntial
stressc	or type	affec	ting	the s	trea	am b	iota.		

Possible Water	
Quality	Possible
Impairment	Enrichment
04-07	
04-08	
04-12A	
04-13A	
14-03	
14-06	04-09
14-07	20-02
14-10	
14-12A	
14-16A	
20-01	
20-03	

Biological conditions are impaired for all five sampling units. Although physical habitat quality is also degraded for the sampling units and for individual streams, the specific stressors causing biological impairment are not necessarily easy to isolate. To more effectively identify the stressors and their sources, it is important to use a more deliberate stressor identification technique (USEPA 2000, Suter et al. 2002, Cormier et al. 2002). There are almost never situations where single, isolated stressors cause biological impairment, most often stressors are multiple and cumulative, both short-term (acute) and longterm (chronic), and they may result from legacy disturbances, such as is the case with many sediment and physical habitat stressors.

Further, our knowledge about the specific modes of action of most stressors is not well tested and there could be both synergistic (two or more stressors amplifying the effects of others) or antagonistic (two or more stressors buffering or reducing the effects of others) effects. The most defensible approach to specifying those stressors that should be reduced or eliminated and their sources that need to be corrected (retrofit, restoration) is a strength-of-evidence process. Data quantity and quality being collected by DPW as part of this program would be sufficient to begin isolating stressor sources, which could then be targeted for correction.

There were no conclusive indications of adverse water quality conditions. Temperature and dissolved oxygen met COMAR standards. There is no state standard for conductivity.

As illustrated in Table 16, E channels in the sampling units have two of three channel characteristics that are significantly different from Western Coastal Plain (WCP) reference conditions (Starr et al. 2009). In general, E channels in the sampling units are straighter than found in stable E reaches, having only 80% of the associated with stable reaches. sinuosity Entrenchment ratios were also relatively low, which means that the reaches found in this year's sampling units occupy more of the stream valley than predicted from stable reference conditions. Regarding width to depth (W/D) ratios, a difference exists between the reference sites and the study sites (p < 0.10), but not at a level of significance typically considered acceptable for scientific publication (p < 0.05). However, the observed narrower W/D ratio indicates that the study reaches are narrower and deeper than expected for stable E channels. These differences from the reference condition are likely indicative of either recovery from instability associated with past development and/or agricultural activities or are associated with on-going adjustment as the reaches evolve toward unstable stream types. The current trajectory for these reaches is unknown at the present time.

In Anne Arundel County and the Maryland Coastal Plain, historical human activities are assumed to have occurred in a similar manner and timeframe as those documented in the Maryland Piedmont physiographic province (Jacobson and Coleman 1986). Jacobson and Coleman cite that human disturbances to land use in the Maryland Piedmont have occurred since

Table 16. Comparison of average E channel dimensionless ratios found in this study to other sources.

Data Sources	Sinuosity	ER	W/D	Reference
General E5 stream type	2.35	39.5	5.78	Rosgen (1996)
E channel WCP reference reaches	1.39	23.5	9.2	Starr et al. (2009)
Field data from this assessment	1.10*	13.5*	7.90**	_

* = Significant difference from E channel WCP reference reaches (p < 0.05) ** = Significant difference from E channel WCP reference reaches (p < 0.10)

approximately 1730, when European settlement of the area initiated a 200-year period of forest clearing and agricultural activities. Since approximately 1930, much of the acreage of land used for farming has been converted to urban, commercial. suburban. and industrial Consequently, streams in the development. Maryland Piedmont have adjusted to the increased flow and sediment supply by overwidening, deepening, and reworking aggraded floodplain materials in an effort to transition toward a sustainable stable form (Jacobson and Coleman 1986), with determination of the ultimate configuration of this sustainable stream form a matter of active research (Walter and Similar processes also are Merritts 2008). assumed to have occurred in Anne Arundel County's portion of the Western Coastal Plain, and the responses of the County's streams are likely still occurring today.

In the Rosgen classification system, the C, E and B stream types are typically considered evolutionary end points that perturbed systems tend to adjust toward over time (Rosgen 1996). The E type dominated in the Sawmill Creek PSU, despite its high levels of impervious surface. Additionally, the Rhode River and West River sampling units also were dominated by the E, B, and C types, which were found in lesser amounts in the other units. Conversely, unstable types like the F and G types were found in significant percentages in the Cabin Branch and Rock Branch sampling units, despite their relatively low levels of impervious surfaces.

One general trend observed across sampling units and within all stream types is the prevalence of channels that are narrower, deeper, straighter, and occupy more of a given valley floor than typical examples of the type. Conditions for the E type streams are discussed previously. **Table 17** demonstrates that similar patterns exist for other observed types.

Finally, these baseline geomorphic assessment field data can be compared to the Maryland Coastal Plain regional relationships of bankfull channel geometry developed for relatively rural channels (McCandless 2003) and for urbanized watersheds (AADPW 2002) to determine whether bankfull characteristics observed in the field at sites where the discharge is unknown depart from USGS gages where bankfull conditions are known. This comparison is shown in **Figure 25**.

As shown in **Figure 25**, nearly all values fall somewhere between the rural and urban bankfull channel regional curves. The implications of this observation on stream channel evolution in these sampling units is unclear, but it likely means that these reaches are in some state of transition where the dominant process is floodplain incision due to a disturbance in the discharge regime associated with impervious surface occurrence. Typically, lateral adjustment follows such incision as the stream resets itself into an equilibrium condition at a different and lower elevation than it was in the pre-disturbance phase.

Table 17. Comparison of mean observed stream reach characteristics by stream type to mean values typical for the stream type.

Stream Type	Entrenchment Ratio		Width /Depth		Sinuosity	
(N*)	Obs.	Тур.	Obs.	Тур.	Obs.	Тур.
B4** (6)	1.73	1.63	11.2	16.6	1.15	1.38
C5 (5)	6.60	2.96	18.8	27.0	1.14	3.45
F5***	1.30	1.14	15.1	21.3	1.30	1.43
G5 (15)	1.37	1.17	8.2	7.2	1.12	1.25

Typical values from Rosgen (1996). * N = number of observations. **Summary data for the B5 type not available. ***Observed values are from the single F type found in 2008.

More detailed watershed assessments would be necessary to determine with greater certainty where these drainage networks are in the evolutionary sequence of adjustment and would be essential for a better understanding of their existing conditions and in the development of management prescriptions to correct unstable reaches as necessary. However, this report provides valuable baseline data that can be compared to data collected in subsequent years and used to generate trend analyses of channel adjustment.

relationships in rural and urban watersheds.

Recommendations

Based on the sampling and analysis results we make the following recommendations for these sampling units. The ultimate focus of these recommendations is for Anne Arundel County to make progress toward reduction and elimination of stressor sources that are causing biological degradation in County streams and rivers.

Investigate potential for retrofitting with stormwater best management practices. As illustrated in **Table 15**, twelve of 50 sites (24%) had biological conditions out of sync with observed habitat that was indicative of possible water quality impairment for the reaches in question. Three of four sampling units have extensive amounts of agricultural land area and one had extensive developed lands. To the extent feasible, BMPs should be installed to improve water quality, particularly in the areas upstream of the sites listed in **Table 15**.

Perform study to identify specific stressors in

County watersheds. As described above, a deliberate stressor identification technique (USEPA 2000, Suter et al. 2002, Cormier et al. 2002) is needed to correctly associate biological stresses with their most probable causes. The stressor identification process can encompass multiple watersheds simultaneously, and the compilation of similar environmental scenarios will strengthen the study. However, individual watershed studies will also be required because each disturbed watershed and stream has unique circumstances.

Track stream channel evolution and trajectory predictions in subsequent sampling rounds. Stability assumptions made about particular sites should be validated with repeated measurements and additional assessment work. By verifying these predictions, the County will have a better understanding of how land use changes impact streams over time, which may eventually allow for fine tuning zoning and development regulations toward maximum protection of streams, riparian habitat, and channel stability.

Literature Cited

AADPW. 2002. Cypress Creek Tributary Assessment and Findings Report. Prepared by Bayland Consultants and Designers, Inc., and Clear Creek Consulting. 32 pp, plus Appendices.

Barbour, M.T. and J.B. Stribling. 1994. A technique for assessing stream habitat structure. Pp. 156-178, <u>In</u> Proceedings of "Riparian Ecosystems of the Humid U.S. and Management, Functions, and Values." National Association of Conservation Districts. Washington, DC.

Barbour, M.T., J. Gerritsen, B.D. Snyder, J.B. Stribling. 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: Periphyton, benthic macroinvertebrates and fish, 2nd edition. EPA841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, DC.

Boward, D. and E. Friedman. 2000. Laboratory methods for benthic macroinvertebrate processing and taxonomy. Maryland Biological Stream Survey, Maryland Department of Natural Resources, Monitoring and Non-Tidal Assessment Division. CBWP-MANTA-EA-00-6. Annapolis, Maryland. November.

Boward, D. 2006. Personal communication on 14 March 2006 with C. Victoria.

Bressler, D., Paul, M. and J. Stribling. 2005. DRAFT Development of tolerance values for benthic macroinvertebrates in Maryland. Tetra Tech, Inc.

Bressler, D. R., J. B. Stribling, M. J. Paul, and M. A. Hicks. 2006. Stressor tolerance values for benthic macroinvertebrates in Mississippi. Hydrobiologia 573:155-172.

Caton, L.W. 1991. Improving subsampling methods for the EPA "Rapid Bioassessment"

benthic protocols. Bulletin of the North American Benthological Society 8(3):317-319.

Cormier, S. M., S. B. Norton, G. W. Suter, II, D. Altfater, and B. Counts. 2002. Determining the causes of impairment in the Little Scioto River, Ohio: part II. Characterization of causes. Environmental Toxicology and Chemistry 21:1125-1137.

Flotemersch, J.E., J.B. Stribling, and M.J. Paul. 2006. Concepts and Approaches for the Bioassessment of Non-Wadeable Streams and Rivers. EPA/600/R-06/127. U. S. EPA, Office of Research and Development, Cincinnati, OH

Harrelson, C.C., C.L. Rawlins., and J.P. Potyondy. 1994. Stream Channel Reference Sites: An Illustrated Guide to Field Technique." <u>U.S. Dept.</u> of Ag., For. Serv., General Technical Report RM-245. Fort Collins, CO.

Hill, C. and J.B. Stribling. 2004. Design of the biological monitoring and assessment program for Anne Arundel County, Maryland. Prepared by Tetra Tech, Inc., Owings Mills, MD, for Anne Arundel County (MD), Office of Environmental and Cultural Resources, Annapolis, MD.

Hill, C.R., J.B. Stribling, and A.C. Gallardo. 2005. Documentation of Method Performance Characteristics for the Anne Arundel County Biological Monitoring Program. Prepared by Tetra Tech, Inc., Owings Mills, MD, for Anne Arundel County (MD), Office of Environmental and Cultural Resources, Annapolis, MD.

Jacobson, R.B. and D.J. Coleman. 1986. Stratigraphy and recent evolution of Maryland Piedmont flood plains. Am. J. Sci. 286: 617-637.

Karr, J. R., K. D. Fausch, P. L. Angermeier, P. R. Yant and I. J. Schlosser. 1986. Assessing biological integrity in running waters. A method and its rationale. Illinois Natural History Survey. Special 36 Publication No. 5. 28 pp. Kazyak, P.F. 2001. Sampling manual. Maryland Biological Stream Survey, Maryland Department of Natural Resources, Monitoring and Non-Tidal Assessment Division. Annapolis, MD. February.

Maryland Department of the Environment (MDE). 2000. 2000 Maryland Stormwater Design Manual, Vol. I, II. Prepared by the Center for Watershed Research and the Maryland Department of the Environment, Water Management Division.

McCandless, T.L. 2003. Maryland stream survey: Bankfull discharge and channel characteristics of streams in the Coastal Plain hydrologic region. U.S. Fish and Wildlife Service, Annapolis, MD. CBFO-S03-02.

Merritt, R.W., K.W. Cummins. 1996. An introduction to the aquatic insects of North America. Hunt Publishing Company, Dubuque, Iowa.

Norton, S. B., S. M. Cormier, M. Smith, and R. C. Jones. 2000. Can biological assessment discriminate among types of stress? A case study for the eastern cornbelt plains ecoregion. Environmental Toxicology and Chemistry 19(4):1113-1119.

Paul, M.J., J.B. Stribling, R.J. Klauda, P. F. Kayzak, M.T. Southerland, and N. E. Roth. 2003. A Physical Habitat Index for Wadeable Streams Maryland. Report to Monitoring and Non-Tidal Assessment Division, Maryland Department of Natural Resources, Annapolis, MD.

Plafkin, J.L., M.T. Barbour, K.D. Porter, S.K. Gross, and R.M. Hughes. 1989. Rapid bioassessment protocols for use in streams and rivers: Benthic macroinvertebrates and fish. U.S. Environmental Protection Agency, Office of Water Regulations and Standards, Washington, D.C. EPA 440-4-89-001.

Prince George's (PG) County. 2000. Low-Impact Development (LID) design strategies: An integrated design approach. EPA 841-B-00-003. U.S. Environmental Protection Agency, Washington, DC.

Richards, C., L. B. Johnson., and G.E. Host. 1996. Landscape-scale influences on stream habitats and biota. Canadian Journal of Fisheries Aquatic Science 53: 295-311.

Roberts, M., C. Smith, and C. Victoria. 2006. Aquatic Biological Assessment of the Watersheds of Anne Arundel County, Maryland: Year 2. Anne Arundel County, Office of Environmental and Cultural Resources, Annapolis, Maryland.

Robinson, G., R. Holt, M. Gaines, S. Hamburg, M. Johnson, H. Fitch, and E. Martinko. 1992. Diverse and contrasting effects of habitat fragmentation. Science 257:524-526.

Rosgen, D.L. 1996. Applied River Morphology. Wildland Hydrology, Pagosa Springs, CO.

Southerland, M., Rogers, G., Kline, M., Morgan, R., Boward, D., Kazyak, P., Klauda, R., Stranko, S. 2005. New Biological Indicators to Better Assess Maryland Streams. Prepared for Monitoring and Non-Tidal Assessment Division, Maryland Department of Natural Resources.

Starr, R., C. Eng, S. Davis, and M. Secrist. *Western Coastal Plain Reference Reach Survey* – 2010. 2009. U.S. Fish and Wildlife Service. Annapolis, MD. CBFO-S09-02.

Stepenuck, K.F., R.L. Crunkilton, L. Wang (2002) Impacts of urban landuse on macroinvertebrate communities in southeastern Wisconsin streams. Journal of the American Water Resources Association 38 (4):1041–1051.

Strahler, A. N. 1957. Quantitative analysis of watershed geomorphology. American Geophysical Union Transactions 38:913-920.

Stribling, J.B., B.K. Jessup, J.S. White, D. Boward, M. Hurd, 1998. Development of a Benthic Index of Biotic Integrity for Maryland Streams. Report to Monitoring and Non-Tidal Assessment Division, Maryland Department of Natural Resources. CBWP-MANTA-EA-98-3.

Stribling, J.B., B. Jessup, and C.J. Victoria. 2008a. Aquatic Biological Assessment of the Watersheds of Anne Arundel County, Maryland: 2006. Anne Arundel County Department of Public Works, Watershed and Ecosystem Services, Annapolis, Maryland.

Stribling, J.B., B. Jessup, and C.J. Victoria. 2008b. Aquatic Biological Assessment of the Watersheds of Anne Arundel County, Maryland: 2007. Anne Arundel County Department of Public Works, Watershed and Ecosystem Services, Annapolis, Maryland

Stribling, J.B., E.W. Leppo, and C. Daley. 1999. Biological Assessment of the Streams and Watersheds of Prince George's County, Maryland. Spring Index Period 1999. PGDER Report No. 99-1. Prince George's County, Department of Environmental Resources, Programs and Planning Division, Largo, MD.

Stribling, J.B., E.W. Leppo, J.D. Cummins, J. Galli, S. Meigs, L. Coffman, and M.-S. Cheng. 2001. Relating Instream Biological Condition to BMP Activities in Streams and Watersheds. Pages 287-304. In B. R. Urbonas (editor), Proceedings of the United Engineering Foundation Conference, Linking Stormwater BMP Designs and Performance to Receiving Water Impacts Mitigation. August 19-24, 2001. Snowmass Village, Colorado. ISBN 0-7844-0602-2.

Suter, G. W. 1993. Ecological Risk Assessment. Lewis, Boca Raton, FL.

Suter, II, G. W., S. B. Norton, and S. Cormier. 2002. A method for inferring the causes of observed impairments in aquatic ecosystems. Environmental Toxicology and Chemistry 21:1101-1111.

Tetra Tech, Inc. 1999. Ecological Data Application System (EDAS), Version 3.2. Owings Mills, MD. Tetra Tech, Inc. 2005. Sampling and Analysis Plan for Anne Arundel County Biological Monitoring and Assessment Program. Report to Anne Arundel County Office of Environmental and Cultural Resources. Annapolis, MD.

U.S. Environmental Protection Agency (USEPA). 1996. Watershed approach framework. EPA/840/S-96/001. Office of Water, Washington, DC.

U.S. Environmental Protection Agency (USEPA). 2000. Stressor identification guidance document. EPA 822-B-00-025. US Environmental Protection Agency, Office of Water, Washington, DC.

U.S. Environmental Protection Agency (USEPA). 2004. Chesapeake Bay: Introduction to an Ecosystem. Produced by the Chesapeake Bay Program, Annapolis, MD. EPA 903-R-04-003. 34 pp.

Victoria, C.J. and J. Markusic. 2007. Aquatic Biological Assessment of the Watersheds of Anne Arundel County, Maryland: 2004. Produced by the Anne Arundel County Department of Public Works, Watershed and Ecosystem Services Group, Annapolis, Maryland. 31 pp., plus appendixes.

Walter, R.C. and D.J. Merritts. 2008. Natural streams and the legacy of water-powered mills. Science. 319: 299-304.

Wolman, M.G. 1954. A Method of Sampling Coarse River-bed Material. Transactions of American Geophysical Union 35: 951-956.

APPENDIX A: SAMPLE FIELD SHEETS

Stream Channel Classification and Assessment Form Rosgen Classification System Level II

Watershed Name:	Stream/ReachID:	
Drainage Area:mi ² /acres/ha		
Observers:	_ Date/Time:/	Lat:
GPS []Y [] N Differential Correction	on? []Y []N Positional Error:ft.	Lon:
Location Description:		
Camera/Film No.	Weather:	Rain in last 24 hrs? [] Y [] N
Photo Nos: USDSLB_	RB	
Bankfull Width (W):ft.		
Bankfull Mean Depth (D) :ft. W/D Ratio:		
W and D checked on Regional Curve?		
Describe feature(s) used:		
Thalwag elv.(TE):ft. Bankfull elv.(BFE):ft. Max Bankfull Depth (TE-BFE): 2X Max Bankfull Depth (2XMBD): Floodprone Area Elevation (TE- 2XMBD):ft. Floodprone Area Width (FPW):	_ft. ft.	
Entrenchment Ratio(FPW/W):		
usdselelvelvdiWS Elv.(WSE)ftft.Thalwag Elv.(TE)ftft.Valley Elv.(VE)ftft.Assessment Reach Length (ARL):ft.Valley Distance (VD):ft.	v. iff. ft. ft. ft. ft.	
WS Slope (WSE/ARL):ft./ft. Valley Slope (VE/VD):ft./ft. Sinuosity (ARD/VD): Meander Length:ft. Belt Width:ft.		

CLASSIFICATION (USE ROSGEN KEY OF NATURAL RIVERS):

Channel Type:	Single Thread []		Multiple Channels []	
Entrenchment Ratio: Width/Depth Ratio:	<1.4 [] <12 []	1.4-2.2 [] 12-40 []	>2.2 [] >40 []	Rosgen
Sinuosity: D50:	<1.2 []	1.2-1.5 []	>1.5 []	Type:
Adjustments?				

Page _____ of _____

Habitat Parameter	Optimal 16-20	Sub-Optimal 11-15	Marginal 6-10	Poor 0-5
Instream Habitat	Greater than 50% of a variety of cobble, boulder, submerged logs, undercut banks, snags rootwads, aquatic plants or other stable habitat.	30-50% of stable habitat. Adequate habitat.	10-30% mix of stable habitat. Habitat availability less than desirable.	Less than 10% of stable habitat. Lack of habitat is obvious.
Epifaunal Substrate	Preferred substrate abundant, stable, and at full colonization potential (riffles well developed and dominated by cobble; and/or woody debris prevalent, no new, and not transient)	Abundance of cobble with gravel &/or boulders common; or woody debris, aquatic veg., undercut banks, or other productive common but not prevalent/suited for full colonization.	Large boulders and/or bedrock prevalent; cobble, woody debris, or other preferred surfaces uncommon.	Stable substrates lacking; or particles are over 75% surrounded by fine sediment or flocculent material.
Velocity/Depth Diversity	Slow (<0.3 m/s), deep (>0.5m); slow, shallow (<0.5m); fast (>0.3m/s), deep; fast, shallow habitats all present.	Only 3 of the 4 habitat categories present.	Only 2 of the 4 habitat categories present.	Dominated by 1 velocity/depth category (usually pools).
Pool/Glide/Eddy Quality	Complex cover/&/or depth > 1.5m; both deep (>0.5m)/shallows (<0.2m) present.	Deep (>0.5m) areas present; but only moderate cover.	Shallows (<0.2m) prevalent in pool/glide/eddy habitat; little cover.	Max depth <0.2m in pool/glide/eddy habitat; or absent completely.
Riffle/Run Quality	Riffle/run depth generally >10 cm, with maximum depth greater than 50 cm (maximum score); substrate stable (e.g. cobble, boulder) & variety of current velocities.	Riffle/run depth generally 5-10 cm, variety of current velocities.	Riffle/run depth generally 1-5 cm; primarily a single current velocity.	Riffle/run depth <1 cm; or riffle/run substrates concreted.
Embeddedness	Percentage that gravel, cobble, and bou	lder particles are surrounded by line sedin	nent or flocculent material.	
Shading	Percentage of segment that is shaded (d shaded in summer.	uration is considered in scoring). 0%= fu	lly exposed to sunlight all day in sum	mer; 100% fully and densely
Trash Rating	Little or no human refuse visible from stream channel or riparian zone.	Refuse present in minor amounts.	Refuse present in moderate amounts.	Refuse abundant and unsightly.
Bank Stability	Upper banks stable, 0-10% of banks with erosional scars and little potential for future problems.	Moderately stable. 10-30% of banks with erosional scars, mostly healed over. Slight potential in extreme floods.	Moderately unstable. 30-60% of banks with erosional scars and high erosion potential during extreme high flow.	Unstable. Many eroded areas. "Raw" areas frequent along straight sections and bends. Side slopes >60 common.
Remoteness	Stream segment more than ¹ / ₄ mile from nearest road; access difficult and little or no evidence of human activity.	Stream segment within ¹ / ₄ mile of but not immediately accessible to roadside access by trail; site with moderately wild character.	Stream within ¹ / ₄ mile of roadside and accessible by trail; anthropogenic activities readily evident.	Segment immediately adjacent to roadside access; visual, olfactory, and/or auditory displeasure experienced.

Vegetation Types

- G- Grasses/Forbes
- R- Regen Deciduous/Shrubs (<4"DBH)
- Y- Young Deciduous (4-12" DBH)
- M- Mature Deciduous (12-24" DBH)
- O- Old Deciduous (>24" DBH)
- A- Regen Coniferous (<4" DBH)
- B- Young Coniferous (4-12" DBH)
- C- Mature Coniferous (12-24" DBH)
- D- Old Coniferous (>24" DBH)
- L- Lawn

Riparian Buffer Zone/ Adjacent Land Cover Types

- FR- Forest OF- Old Field EM- Emergent Vegetation LN- Mowed Lawn TG- Tall Grass LO- Logged Area SL- Bare Soil RR- Railroad PV- Paved Road PK- Parking Lot/Industrial/Commercial GR- Gravel Road DI- Dirt Road PA- Pasture OR- Orchard CP- Cropland
- HO-Housing

Sampleability Codes

- s- Sampleable
- 1- Dry Stream Bed
- 2- Too Deep
- 3- Marsh, no defined channel
- 4- Excessive Riparian Vegetation
- 5- Impoundment
- 6- Tidally Influenced
- 7- Permissions Denied
- 8- Unsafe (Describe in Comments)
- 9- Beaver 10- Other

Instream Blockage Codes

DM- Dam PC- Pipe Culvert F- Fishway GW- Guaging Station Weir G- Gabion PX- Pipeline Crossing AC- Arch Culvert BC- Box Culvert TG- Tide Guage

(Note: Height is measured in meters from stream surface to water surface above structure)

Other Notes:

naditat assessment field da	HADITAT ASSESSMENT FIELD DATA SHEET-LOW GRADIENT STREAMS (FROMT)					
STREAM NAME	LOCATION					
STATION #	STREAM CLASS					
LAT	RIVER BASIN					
STORET #	AGENCY					
INVESTIGATORS						
FORM COMPLETED BY	DATE TIME	REASON FOR SURVEY				

	Habitat	Condition Category					
	Parameter	Optimal	Suboptimal	Marginal	Poor		
	1. Epifaunal Substrate/ Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	30-50% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	10-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 10% stable habitat; lack of habitat is obvious; substrate unstable or lacking.		
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
	2. Pool Substrate Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Mixture of soft sand, mud, or clay; mud may be dominant; some root mats and submerged vegetation present.	All mud or clay or sand bottom; little or no root mat; no submerged vegetation.	Hard-pan clay or bedrock; no root mat or vegetation.		
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
ling reach	3. Pool Variability	Even mix of large- shallow, large-deep, small-shallow, small- deep pools present.	Majority of pools large- deep; very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small- shallow or pools absent.		
ampl	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
meters to be evaluated in s	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than <20% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 20-50% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 50-80% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 80% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.		
Para	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.		
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		

HABITAT ASSESSMENT FIELD DATA SHEET-LOW GRADIENT STREAMS (FRONT)

Habitat	Condition Category							
Parameter	Optimal	Suboptimal	Marginal	Poor				
6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.				
SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
7. Channel Sinuosity	The bends in the stream increase the stream length 3 to 4 times longer than if it was in a straight line. (Note - channel braiding is considered normal in coastal plains and other low-lying areas. This parameter is not easily rated in these areas.)	The bends in the stream increase the stream length 2 to 3 times longer than if it was in a straight line.	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	Channel straight; waterway has been channelized for a long distance.				
SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
8. Bank Stability (score each bank)	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.					
SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0				
SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0				
9. Vegetative Protection (score each bank) Note: determine left or right side by facing downstream.	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.				
SCORE (LB)	Left Bank 10 9 9	8 7 6	5 4 3	2 1 0				
SCORE (RB)	Right Bank 10 9 9	8 7 6	5 4 3	2 1 0				
10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear- cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12- 18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6-12 meters; human activities have impacted zone a great deal.	2 Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.				
SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0				
SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0				

HABITAT ASSESSMENT FIELD DATA SHEET-LOW GRADIENT STREAMS (BACK)

Total Score _____

Benthic Spring Sampling Data Sheet						
SITE	Segment Type Year Lear 2 0 0 5 Reviewed By:					
	Sample Label Verified By: 2nd Reviewer:					
Year Month	Day					
	Crew:					
	itary) Project:					
Distance from Nearest Road	RIPARIAN VEGETATION (facing unstream) WATER OUAL ITY					
to Site (m)						
Remoteness	Width (50m max)					
Bank Erosion	Adjacent Land Cover					
Left Bank Right Bank	Vegetation Type (see back) DO (mg/L)					
Extent	Buffer Breaks (Y/N)					
Severtity	Buffer Break Types (M=minor; S=severe) pH					
1=min	Storm Drain					
2=mod	Tile Drain Cond (ms/cm)					
3=severe Eroded Area (m2	Impervious Drainage					
X 10)	Gully Turbidity (NTU)					
Bank Stability	Orchard					
	Crop Meter Calibrations by:					
	Pasture Sampleability					
Benthic Habitat Sampled	New Construction Benthos					
(Square feet; Total = 20 square feet)	Dirt Road Habitat Assessment					
	Gravel Road Water Quality					
Rootwad/Woody Debris	Raw Sewage Culvert in Segment2 (y/n)					
	CHANNEL IZATION Sampleable? (v/n)					
Undercut Banks	Evidence of Channel Straightening or Dredging (Y/N)					
Other	TYPE EXTENT (m) Width of Culvert (m)					
(Specify)	Left Bank Bottom Right Bank Maximum Depth (cm)					
Stream Width (m)	Gabion No. Instream Woody Debris					
0 m	Rip-rap No. of Dewatered					
75 m	Earthen Berm Woody Debris					
LANDUSE (Y/N)	Drege Spoil off Channel No. of Instream Rootwads					
Old Field	Pipe Culvert No. of Dewatered Rootwads					
Deciduous Forest	HABITAT ASSESSMENT PHOTODOCUMENTATION					
Coniferous Forest	Instream Habitat (0-20)					
Wetland	Epifaunal Substrate (0-20) Subject					
	Peol/Clide/Eddy Quality (0-20)					
Residential	Evtent (0-20)					
Commercial/Industrial	Riffle/Run Quality (0-20)					
Cropland	Extent (0-20)					
Pasture	Embeddedness (%)					
Orchard/Vineyard/Nursery	Shading (%)					
Golf Course	Trash Rating Picture Number Subject					
Site Acces Route						
Sampling Consd (num. Anodes)					
comments						

APPENDIX B: ROSGEN STREAM CLASSIFICATION

Source: Rosgen, D.L. 1996. Applied River Morphology. Wildland Hydrology, Pagosa Springs, CO.

APPENDIX C: GEOMORPHIC ASSESSMENT RESULTS

Site ID	Drainage Area (mi ²)	$\mathbf{Axs} \\ (ft^2)$	Wbf (ft)	Dbf (ft)	W/D (ft/ft)	Wfp (ft)	ER (<i>ft/ft</i>)	Slope %	Sin. (<i>ft/ft</i>)	D50 (<i>mm</i>)	Adjustments?	Rosgen Stream Type
04-01	0.51	8.9	8.7	1.0	8	108	12.5	1.18	1.0	0.45	↑Sin	E5
04-06	1.95	17.0	14.5	1.2	12	80	5.5	0.28	1.0	0.25	↑Sin	C5
04-07	0.11	15.8	13.5	1.2	12	150	11.1	0.10	1.0	0.26	↑Sin	E5
04-08	0.64	13.7	11.0	1.2	9	25	2.2	0.25	1.2	0.36	↑Sin	E5
04-09	5.10	23.9	24.9	1.0	26	229	9.2	0.08	1.0	0.13	↑Sin	C5
04-10	-	-	-	-	-	-		_	-	-	_	Not Classified
04-12A	1.84	17.4	9.8	1.8	6	245	25.1	0.42	1.1	0.25	↑Sin	E5
04-13A	0.80	4.1	7.1	0.6	12	47	6.7	0.54	1.0	0.25	↑Sin	E5
04-15A	0.37	10.1	7.8	1.3	6	56	7.1	0.84	1.0	0.25	↑Sin	E5
04-20A	6.97	41.5	16.7	2.5	7	170	10.2	0.02	1.1	0.25	↑Sin	E5
13-03	0.75	8.9	15.2	0.6	26	115	7.5	0.10	1.1	0.25	↑Sin	C5
13-04	0.63	11.4	13.8	0.8	17	106	7.6	0.10	1.1	0.25	↑Sin	C5
13-05	0.38	4.0	5.7	0.7	8	125	21.8	0.95	1.3	0.25	↑Sin	E5
13-06	0.35	5.9	5.6	1.1	5	38	6.8	0.35	1.1	0.15	↑Sin	E5
13-07	_	-	_	_	_	-	-	_	-	-	_	Not Classified
13-08	0.22	4.7	6.9	0.7	10	10	1.4	1.00	1.0	0.25	↓ER	G5
13-11A	1.10	15.1	12.6	1.2	10	278	22.1	0.15	1.0	0.25	↑Sin	E5
13-12A	0.66	16.0	6.4	2.5	3	18	2.8	0.58	1.1	0.25	↑Sin	E5
13-13A	0.37	10.3	7.0	1.5	5	8	1.1	0.46	1.0	0.25	↑Sin	G5c
13-14A	0.29	3.9	6.0	0.7	9	8	1.3	0.47	1.0	0.12	↑Sin	G5c
14-01	0.25	3.0	5.3	0.6	10	9	1.6	0.55	1.0	0.25	†Sin, ↓ER	G5c
14-02	0.73	7.0	10.5	0.7	16	17	1.6	0.47	1.0	0.25	↑Sin	B5c
14-03	0.28	6.6	8.2	0.8	10	14	1.7	0.28	1.0	0.25	†Sin, †W/D	B5c
14-06	0.22	4.2	6.0	0.7	9	10	1.7	0.43	1.0	0.25	†Sin, †W/D	B5c
14-07	0.38	19.6	12.0	1.6	7	143	11.9	0.47	1.1	0.19	↑Sin	E5
14-09	0.13	3.6	5.6	0.6	9	155	27.8	1.60	1.0	0.25	↑Sin	E5

Site ID	Drainage Area (mi ²)	$\mathbf{Axs} \\ (ft^2)$	Wbf (ft)	Dbf (ft)	W/D (ft/ft)	Wfp (ft)	ER (<i>ft/ft</i>)	Slope %	Sin. (<i>ft/ft</i>)	D50 (<i>mm</i>)	Adjustments?	Rosgen Stream Type
14-10	2.20	15.8	12.5	1.3	10	100	8.0	0.32	1.0	0.25	↑Sin	E5
14-12A	1.08	13.7	11.1	1.2	9	156	14.1	0.06	1.2	0.25	↑Sin	E5
14-14A	0.89	10.2	8.6	1.2	7	10	1.2	1.04	1.5	0.25	None	G5c
14-16A	—	_	_	_	-	-	_	_	_	-	_	Not Classified
20-01	3.13	22.8	17.2	1.3	13	20	1.2	0.42	1.1	0.17	↑Sin	G5c
20-02	1.90	43.2	23.8	1.8	13	75	3.2	0.32	1.5	0.47	None	C5
20-03	0.03	3.7	6.0	0.6	10	12	2.0	1.60	1.2	0.25	↑W/D	B5c
20-04	0.18	3.7	6.8	0.5	13	9	1.3	0.58	1.2	0.18	↓W/D	G5c
20-05	0.89	8.9	7.6	1.2	7	11	1.4	0.62	1.2	0.25	↓ER	G5c
20-06	0.50	26.7	12.9	2.1	6	20	1.6	0.80	1.1	0.27	↓ER, †Sin	G5c
20-07	0.22	7.0	7.2	1.0	7	9	1.3	0.52	1.0	0.19	↑Sin	G5c
20-08	0.64	14.9	12.1	1.2	10	21	1.7	2.80	1.1	0.20	↑Sin, ↑W/D	B5
20-10	4.80	39.5	24.4	1.6	15	31	1.3	0.28	1.3	0.40	None	F5
20-11A	0.15	3.3	5.1	0.6	8	8	1.5	1.14	1.2	0.25	↓ER	G5c
23-01	1.00	10.4	11.8	0.9	13	21	1.7	0.24	1.6	0.31	None	B5c
23-02	1.48	15.9	12.3	1.3	10	154	12.6	0.05	1.2	0.25	↑Sin	E5
23-03	0.69	19.4	13.0	1.5	9	18	1.4	0.47	1.0	0.31	†Sin, ↓ER	G5c
23-04	2.10	30.2	14.1	2.2	6	20	1.4	0.41	1.5	0.30	None	G5c
23-05	2.10	18.3	11.4	1.6	7	16	1.4	0.36	1.4	0.25	None	G5c
23-06	1.30	29.8	15.0	2.0	8	18	1.2	0.62	1.0	0.30	None	G5c
23-07	0.07	8.8	7.6	1.2	7	12	1.6	1.45	1.1	0.25	↓ER	G5c
23-09	3.00	30.6	13.1	2.3	6	30	2.3	0.19	1.0	0.36	↓ER	E5
23-10	_	_	_	_	-	_	_	_	-	_	_	Not Classified
23-13A	0.68	9.8	8.0	1.2	7	300	37.5	0.07	1.3	0.22	↑Sin	E5

APPENDIX D: QUALITY CONTROL SUMMARY

QUALITY CONTROL

Three aspects of data quality were addressed for the biological components of this dataset. They include field sampling precision (repeatability), laboratory sorting and subsampling bias, and taxonomic precision (consistency) (Flotemersch et al. 2006, Stribling et al. 2008).

<u>Field sampling precision</u> was calculated using results from 5 sample pairs for the revised B-IBI (Southerland et al. 2005), including individual metrics (**Table D-1**). The MQO for the B-IBI is 15%, 10%, and ± 0.5 for median relative percent difference (RPD), coefficient of variability (CV), and 90 percent confidence interval, respectively. Results for the 2008 data in this dataset were 14, 11.6, and ± 0.39 . Somewhat of note here is that there were no (zero) mayflies found in any of the replicated samples, resulting in zero values for two of the metrics, and contributing to the zero value in another.

Index and metrics	mean	avgRPD	medRPD	MSE	RMSE	CV	CI90
B-IBI	2.1	14.3	14	0.06	0.24	0.12	0.4
Total Taxa	20.4	26.2	12.5	12.60	3.55	0.17	5.8
EPT Taxa	2.9	35.4	28.6	1.10	1.05	0.36	1.7
Ephemeroptera							
Taxa	0	0	0	0	0	0	0
% Intolerant-							
Urban	32.3	100.7	86.6	278.19	16.68	0.52	27.4
% Ephemeroptera	0	0	0	0	0	0	0
Scraper Taxa	0	0	0	0	0	0	0
% climbers	2.8	0	0	1.40	1.18	0.43	1.9

Table D-1. Precision statistics for field sampling (n = 10 [5 sample pairs]).

mRPD is mean relative percent difference, MSE is mean square error, RMSE is root MSE, CV is coefficient of variability, and CI90 is the 90% confidence interval. "na" is not applicable, and in this application indicates that the value for the denominator was zero (0).

<u>Laboratory sorting and subsampling bias</u> was tested by an external laboratory for five sort residue samples (**Table D-2**). All five samples passed the measurement quality objective of PSE > 90%. For these samples, PSE ranged from 94.1 to 99.0%.

it the the				
Station	No. orgs	No.	Total	
ID	(primary)	recoveries	No.	PSE
04-06	100	4	104	96.2
04-10	100	1	101	99
13-03	104	8	112	92.9
13-07	112	7	119	94.1
14-07	111	3	114	97.4
20-07	120	2	122	98.4

Table D2. QC results from external laboratory sort residue

 re-checks.

<u>Taxonomic precision</u> was tested by using an independent taxonomist (from a separate laboratory) to re-identify a randomly-selected subset of six samples, and then quantifying differences. The most important result is that of PTD, for which the measurement quality objective (MQO) is 15%. All six sample comparisons fell well below the MQO, with an overall mean of 6.3 (s.d. 4.5), with values ranging from 0.9-14.7 (**Table D-3**). There were very few straight disagreements, and the dominant error type with all comparisons was hierarchical and mostly arising from how worm (Oligochaeta) fragments were counted and recorded. No corrective actions were necessary. **Table D-4** provides a summary comparison of QC results with programmatic MQO. For detailed results, contact Chris Victoria, and request the 2008 taxonomic QC report (Tetra Tech 1008).

Table D-3. QC results from taxonomic re-identification of randomly selected samples. Abbreviations: PDE, percent difference in enumeration; PTD, percent taxonomic disagreement; PTC (absDIFF), percent taxonomic completeness (absolute difference); PDEm, PDE midges only; PTDm, PTD midges only.

	PDE		РТС
Sample ID*		PTD	(absDIFF)
04-09	0	14.7	8.3
04-13A	0.9	6.3	2.6
13-13A QC	0	0.9	0.0
14-16A	0	5.7	2.9
20-03	2.4	5.6	1.1
20-05 QC	0.5	4.8	13.5
mean	0.6	6.3	3.0
sd	1.0	4.5	3.2

Table D-4. Summary of QC results and measurement quality objectives. MQO are taken from Hill et al. 2005; result values are from this dataset, with field sampling values based on the 2005 benthic index.

Activity	Performance indicator	Term	MQO	Result
A. Field sampling	Precision	Median relative pct. difference (mRPD)	<15	14
		Root mean square error (RMSE)	na	0.24
		Coefficient of variability (CV)	<10	12.0
		90% confidence interval (CI90)	< 0.60	0.4
B. Sorting/ subsampling	Bias	Pct. sorting efficiency (PSE)	>90	99.4
C. Taxonomic identification	Precision (consistency)	Pct. difference in enumeration (PDE)	<5	0.6
		Pct. taxonomic disagreement (PTD)	<15	1.0

Citations:

Flotemersch, J.E., J.B. Stribling, and M.J. Paul. 2006. Concepts and Approaches for the Bioassessment of Non-Wadeable Streams and Rivers. EPA/600/R-06/127. U. S. EPA, Office of Research and Development, Cincinnati, OH.

Hill, C.R., J.B. Stribling, and A.C. Gallardo. 2005. Documentation of Method Performance Characteristics for the Anne Arundel County Biological Monitoring Program. Prepared by Tetra Tech, Inc., Owings Mills, MD, for Anne Arundel County (MD), Office of Environmental and Cultural Resources, Annapolis, MD.

Southerland, M., Rogers, G., Kline, M., Morgan, R., Boward, D., Kazyak, P., Klauda, R., Stranko, S. 2005. New Biological Indicators to Better Assess Maryland Streams. Prepared for Monitoring and Non-Tidal Assessment Division, Maryland Department of Natural Resources.

Stribling, J. B., B. K. Jessup, and D. L. Feldman. 2008. Precision of benthic macroinvertebrate indicators of stream condition in Montana. Journal of the North American Benthological Society 27(1): 58-67.

Tetra Tech, Inc. 2009. *Taxonomic Data Quality Control Report*. <u>Prepared for</u>: Anne Arundel County (MD), Department of Public Works; Watersheds, Ecosystems, and Restoration Services, Annapolis, MD. <u>Prepared by</u>: Tetra Tech, Inc., Center for Ecological Sciences, 400 Red Brook Blvd., Suite 200, Owings Mills, MD. (*For further information, contact Chris Victoria 410-222-4240, pwvict16@aacounty.org*).

COUNTY EXECUTIVE, JOHN R. LEOPOLD

DEPARTMENT OF PUBLIC WORKS BUREAU OF ENGINEERING WATERSHED AND ECOSYSTEM SERVICES GROUP 2664 RIVA ROAD / MS 6402 ANNAPOLIS, MD 21401

March 27, 2008

TO:	Sam Stribling, Chris Millard
FROM:	Chris Victoria
SUBJECT:	Quality Control Field Audit of Tetra Tech, Inc., performance in the
	geomorphologic assessment work as part of the Countywide Biological
	Monitoring Program

On March 24, 2008, I evaluated the field activities of a Tetra Tech crew as they collected the required geomorphologic data as part of the Countywide Biological Monitoring Program. Work at two sites (20-01 and 20-08) was evaluated. This short report describes my findings.

OFFICE WORK. For each site, the drainage area was determined before going to the field, but the crew did not have the information with them in the field. The survey instrument was a rental unit and the crew chief did not know the last time it had been calibrated. The crew had all necessary equipment and supplies before going to the field. None of the crew has had training in geomorphic assessment techniques in general or the Rosgen methodology in particular, although the crew was experienced in performing a variety of habitat assessment methodologies.

REACH RECONNAISSANCE. At one site (20-01), the geomorphic reach was co-located with the bioreach while at 20-08 the site was located just upstream of the upstream end of the biological assessment reach. For 20-01, the cross section was located near the upstream end of the reach away from the confluence of a large tributary that intersected the reach near the midpoint. For 20-08 the section was located just upstream of the upstream end of the assessment reach due to site conditions (culvert and road crossing ~100 feet downstream of downstream end of reach) and was located in a proper stream feature (i.e.- a riffle, transition or straight run and not on a meander bend). For both sites, the bankfull indicator was determined for the entire reach and found in the cross section.

CROSS SECTION MEASUREMENT. At both reaches the zero point was set on the left bank / down stream. Monuments were properly installed and marked. A GPS was taken and the location was properly described. Proper photos were taken. All necessary measurements were made on the cross section. Data were properly recorded on the appropriate data sheets.

Phone: (410) 222-7441 • <u>www.aadpw.org</u> • Fax: (410) 222-7255

Floodprone width calculations were made in the field and the final FPW was measured using a handheld range finder.

PEBBLE COUNT. At both sites, full pebble counts were performed. At both sites, the transects were properly distributed by feature prevalence in the reach. Particles, when found, were properly measured along the intermediate axis. Particle selection was properly distributed along individual transects, although the technician collecting the pebbles was cautioned not to look at the bottom when reaching for samples. Data were properly recorded on the data sheet.

REACH SLOPE MEASUREMENT. The measurement was collected over sufficient distance. The survey instrument was set up properly. A feature-to-feature measurement was made and data collection was consistent in that bankfull indicators, the edge of water and the thalweg were all measured everywhere any of these measurements was collected.

OVERALL COMMENTS. In most cases, the geomorphic data collection activities are being properly executed. The following corrections were made:

1. The team was instructed to bring the drainage area vs. channel geometry information to the field. A discussion of the utility of this information took place.

2. The team was cautioned to not look at the stream bottom when grabbing samples for the pebble count.

Other than the above-described corrections, the work is being performed properly according to published SOPs and should result in the collection of satisfactory data.

APPENDIX E: MASTER TAXA LIST

Taxonomic Group	Individuals	% Observed
Diplocladius	707	12.3
Hydrobaenus	532	9.3
Stegopterna	499	8.7
Chaetocladius	372	6.5
Orthocladius/Cricotopus	360	6.3
Nais	245	4.3
Prosimulium	244	4.3
Enchytraeidae	186	3.2
Tanytarsus	161	2.8
Tubificinae	155	2.7
Nemouridae	140	2.4
Gammarus	109	1.9
Tvetenia	103	1.8
Caecidotea	96	1.7
Pisidiidae	91	1.6
Rheocricotopus	80	1.4
Polypedilum	76	1.3
Simuliidae	73	1.3
Paranemoura	72	1.3
Amphinemura	66	1.2
Parametriocnemus	64	1.1
Eukiefferiella	61	1.1
Limnephilidae	50	0.9
Ironoquia	49	0.9
Nemata	47	0.8
Simulium	46	0.8
Corynoneura	45	0.8
Limnodrilus	43	0.7
Synurella	42	0.7
Thienemannimyia genus	41	
group		0.7
Culicoides	33	0.6
Zavrelimyia	33	0.6
Smittia	27	0.5
Rheotanytarsus	26	0.5
Physa	25	0.4
Pisidium	25	0.4
Neophylax	23	0.4
Orthocladius	21	0.4
Haploperla	20	0.3

Taxonomic Group	Individuals	% Observed
Nemoura	19	0.3
Paratendipes	18	0.3
Phaenopsectra	18	0.3
Tipula	17	0.3
Ancyronyx	16	0.3
Pilaria	16	0.3
Stenelmis	16	0.3
Bezzia/Palpomyia	15	0.3
Nanocladius	14	0.2
Hydroporinae	13	0.2
Macronychus	12	0.2
Orthocladiinae	12	0.2
Ablabesmyia	11	0.2
Allocapnia	11	0.2
Diplectrona	11	0.2
Hexatoma	11	0.2
Lebertia	11	0.2
Erioptera	10	0.2
Lumbricidae	10	0.2
Paraphaenocladius	10	0.2
Cheumatopsyche	9	0.2
Stempellinella	9	0.2
Anchytarsus	8	0.1
Argia	8	0.1
Crangonyx	8	0.1
Gyraulus	8	0.1
Oulimnius	8	0.1
Pseudorthocladius	8	0.1
Thienemanniella	8	0.1
Calopteryx	7	0.1
Chrysops	7	0.1
Dicrotendipes	7	0.1
Limnophyes	7	0.1
Neoporus	7	0.1
Nigronia	7	0.1
Pseudosmittia	7	0.1
Cladopelma	6	0.1
Dasyhelea	6	0.1
Hemerodromia	6	0.1
Ilyodrilus	6	0.1
Taxonomic Group	Individuals	% Observed
---------------------	-------------	------------
Lumbriculidae	6	0.1
Natarsia	6	0.1
Ormosia	6	0.1
Paratanytarsus	6	0.1
Taenionema	6	0.1
Brachycera	5	0.1
Ceratopogon	5	0.1
Cricotopus	5	0.1
Dero	5	0.1
Lymnaeidae	5	0.1
Acerpenna	4	0.1
Agabus	4	0.1
Aulodrilus	4	0.1
Ephemerella	4	0.1
Helichus	4	0.1
Heterotrissocladius	4	0.1
Hydatophylax	4	0.1
Mallochohelea	4	0.1
Spirosperma	4	0.1
Stenochironomus	4	0.1
Stictochironomus	4	0.1
Tubifex	4	0.1
Zalutschia	4	0.1
Brillia	3	0.1
Chloroperlidae	3	0.1
Copelatus	3	0.1
Culiseta	3	0.1
Dubiraphia	3	0.1
Hydropsyche	3	0.1
Krenopelopia	3	0.1
Paracladopelma	3	0.1
Parakiefferiella	3	0.1
Planariidae	3	0.1
Pristina	3	0.1
Prostoma	3	0.1
Pycnopsyche	3	0.1
Sciaridae	3	0.1
Slavina	3	0.1
Stilocladius	3	0.1
Alluaudomyia	2	

Taxonomic Group	Individuals	% Observed
Caenis	2	
Dixella	2	
Endochironomus	2	
Fossaria	2	
Gomphidae	2	
Gonomyia	2	
Larsia	2	
Leptoceridae	2	
Menetus	2	
Paramerina	2	
Perlodidae	2	
Potthastia	2	
Pseudolimnophila	2	
Tipulidae	2	
Tribelos	2	
Aedes	1	
Antocha	1	
Apsectrotanypus	1	
Aquarius	1	
Baetidae	1	
Baetis	1	
Bittacomorpha	1	
Boyeria	1	
Calopterygidae	1	
Cambarinae	1	
Cecidomyiidae	1	
Chelifera	1	
Chironomus	1	
Cordulegaster	1	
Corduliinae/Libellulinae	1	
Cryptotendipes	1	
Culicidae	1	
Dineutus	1	
Diptera	1	
Dolichopodidae	1	
Eccoptura	1	
Enallagma	1	
Ferrissia	1	
Gomphus	1	
Helisoma	1	

Taxonomic Group	Individuals	% Observed
Hydrobiidae	1	
Isoperla	1	
Labrundinia	1	
Micropsectra	1	
Musculium/Sphaerium	1	
Oligostomis	1	
Paralauterborniella	1	
Peltodytes	1	
Physidae	1	
Polycentropus	1	
Procladius	1	
Ptilostomis	1	
Quistradrilus	1	
Rheosmittia	1	
Saetheria	1	
Sialis	1	
Sphaeromias	1	
Stygobromus	1	
Veliidae	1	
TOTAL	5737	

Note: only those taxa for which at least 0.1% occurrence was observed have a % Observed value presented here.

This page intentionally left blank.

APPENDIX F: INDIVIDUAL SITE SUMMARIES

Note: A map showing the location of the sample sites in each PSU precedes each collection of individual site summaries.

This page intentionally left blank.

This page intentionally left blank.

Location/Site Access: Located at Arundel Golf Park Latitude/Longitude: 39.16283/-76.65556

Land Use Analysis:

Land Use	Acres	% Area
Airport	95.2	29.1
Commercial	4.7	1.4
Open Space	183.5	56.1
Residential 1/8-		
acre	0.2	0.1
Transportation	7.1	2.2
Water	0.6	0.2
Woods	35.4	10.8
Grand Total	326.7	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
84.7	326.7	25.9

Results:

- Biological condition "Poor"
- Habitat scores "Non Supporting" and "Degraded"
- Habitat assessment results indicate degraded conditions at this site, but the biological community shows high diversity and is not as impaired as expected based on the observed habitat quality.
- Bank, riparian, and sediment conditions are mostly marginal. The channel is highly accessible to public parklands.
- Sample dominated by worms (*Limnodrilus*)
- Stream type was identified as an E5, slope was 1.18 percent, and the median channel substrate was medium sand
- Typically, E channels are stable. The high exposure and landscape management of the riparian area may contribute to poor biological conditions

- Protect the riparian area. Naturalize if feasible.
- Determine need, feasibility of BMP retrofits on airport property.

Sawmill Creek Sampling Unit

IBI and Metric Scores	
Narrative Rating	Poor
Overall Index	2.43
Total Taxa Score	5
EPT Taxa Score	1
Ephemeroptera Taxa Score	3
Intolerant Urban % Score	1
Ephemeroptera % Score	3
Scraper Taxa Score	1
% Climbers	3
Calculated Metric Values	
Total Taxa	32
EPT Taxa	1
Ephemeroptera Taxa	1
Intolerant Urban %	3.96
Ephemeroptera %	0.99
Scraper Taxa	0
% Climbers	2 97
70 Chinocis	2.91
Pisidiidae Macronychus Orthocladiinae Paramerina Parametriocnemus Paraphaenocladius Paratanytarsus Thienemannimyia genus group Pseudolimnophila Lymnaeidae Stegopterna Stenelmis Tanytarsus	1 1 2 2 4 2 2 4 1 1 2 6
Tipula Tipula Tribelos Tubificinae Hydroporinae Cambarinae Polypedilum Enchytraeidae Ablabesmyia Nemata Lumbricidae Aulodrilus Enallagma Chaetocladius Chironomus Culicoides Diplocladius Limnodrilus Caenis	$ \begin{array}{c} 1 \\ 2 \\ 1 \\ 5 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 4 \\ 42 \\ 1 \end{array} $
Total Individuals	101

<u>Physical Habitat</u>			
EPA Rapid Bioassessment			
Bank Stability- Left Bank	5	Pool Variability	8
Bank Stability- Right Bank	5	Riparian Vegetative Zone Width- Left Bank	5
Channel Alteration	8	Riparian Vegetative Zone Width- Right Bank	5
Channel Flow Status	17	Sediment Deposition	8
Channel Sinuosity	7	Vegetative Protection (Left Bank)	6
Epifaunal Substrate/Available Cover	10	Vegetative Protection (Right Bank)	6
Pool Substrate Characterization	10		
		EPA Habitat Score	100
		EPA Narrative Ranking	NS

Maryland Biological Stream Survey PHI

Drainage area (acres)	326.7	Instream Wood Debris	5
Remoteness	0	Bank Stability	10
Shading	65		
Epifaunal Substrate	6	PHI Score	55.92
Instream Habitat	10	PHI Narrative Ranking	D
Water Chemistry			
Dissolved Oxygen (mg/L)	9.37	Specific Conductance (μ S/cm)	322
pH	6.98	Temperature (°C)	7.55

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi ²)	0.51	Cross Sectional Area (ft ²)	8.9
Bankfull Width (ft)	8.7	Water Surface Slope (%)	1.18
Mean Bankfull Depth (ft)	1.0	Sinuosity	1.0
Floodprone Width (ft)	108	D50 (mm)	0.45
Entrenchment Ratio	12.5	Adjustments?	↑ Sin
Width to Depth Ratio	8.4	Rosgen Stream Type	E5

Location/Site Access: Located at Mead Rd Crossing Latitude/Longitude: 39.19957/-76.6301

Land Use Analysis:

Land Use	Acres	% Area
Airport	110.7	8.9
Commercial	102.1	8.2
Industrial	67.6	5.4
Open Space	155.3	12.4
Residential 1/4-		
acre	413.1	33.1
Residential 1/8-		
acre	86.2	6.9
Residential 1-		
acre	10.0	0.8
Residential 2-		
acre	4.7	0.4
Transportation	71.8	5.8
Utility	23.2	1.9
Water	3.4	0.3
Woods	200.6	16.1
Grand Total	1248.7	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
520.8	1248.7	41.7

Results:

- Biological condition "Very Poor"
- Habitat scores "Non Supporting" and "Severely Degraded"
- Biological community condition is appropriate for the habitat quality observed.
- All habitat features have marginal or poor ratings
- Sample dominated by worms (*Enchytraeidae*) and midges (*Orthocladius/Cricotopus*)
- Stream type was identified as an C5, slope was 0.278 percent, and the median channel substrate was estimated as fine or medium sand
- Typically, C channels are stable, though habitat ratings related to channel stability indicate that this reach is degraded
- Conductivity was higher at this site than any other site sampled in 2008

Recommendations:

• Investigate possibilities for restoring habitat features, including management of runoff that may be associated with high imperviousness

Sawmill Creek Sampling Unit

IBI and Metric Scores	
Narrative Rating	Very Poor
Overall Index	1.29
Total Taxa Score	3
EPT Taxa Score	1
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	1
Ephemeroptera % Score	1
Scraper Taxa Score	1
% Climbers	1
Calculated Metric Values	
Total Taxa	15
EPT Taxa	0
Ephemeroptera Taxa	0
Intolerant Urban %	1
Ephemeroptera %	0
Scraper Taxa	0
% Climbers	0
Nemata Tubifex Culicoides Lumbricidae Zavrelimyia Tipula Stegopterna Pseudosmittia Physa Ormosia Copelatus Orthocladius/Cricotopus Aulodrilus Enchytraeidae Cecidomyiidae	4 1 2 6 1 1 1 1 1 3 3 15 1 59 1
Total Individuals	100

Physical Habitat			
EPA Rapid Bioassessment			
Bank Stability- Left Bank	3	Pool Variability	8
Bank Stability- Right Bank	3	Riparian Vegetative Zone Width- Left Bank	2
Channel Alteration	8	Riparian Vegetative Zone Width- Right Bank	2
Channel Flow Status	10	Sediment Deposition	5
Channel Sinuosity	3	Vegetative Protection (Left Bank)	4
Epifaunal Substrate/Available Cover	7	Vegetative Protection (Right Bank)	4
Pool Substrate Characterization	10		
		EPA Habitat Score	69
		EPA Narrative Ranking	NS
Maryland Biological Stream	Survey I	PHI	
Drainage area (acres)	1248.7	Instream Wood Debris	8
Remoteness	2	Bank Stability	6
Shading	40		
Epifaunal Substrate	3	PHI Score	40.82
Instream Habitat	7	PHI Narrative Ranking	SD
Water Chemistry			
Dissolved Oxygen (mg/L)	11.8	Specific Conductance (µS/cm)	1147
рН	7.4	Temperature (°C)	5.9

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi ²)	1.95
Bankfull Width (ft)	14.5
Mean Bankfull Depth (ft)	1.2
Floodprone Width (ft)	80
Entrenchment Ratio	5.5
Width to Depth Ratio	12.3

2.3	Rosgen Stream Type	C5
5.5	Adjustments?	↑Sin
80	D50 (mm)	0.25*
1.2	Sinuosity	1.0*
4.5	Water Surface Slope (%)	0.278
.95	Cross Sectional Area (ft ²)	17.0

*=estimated

Location/Site Access: Located at Andover Park horse farm Latitude/Longitude: 39.19495/76.66482

Land Use Analysis:

Land Use	Acres	% Area
Commercial	13.9	20.5
Open Space	34.3	50.8
Residential 1/4-		
acre	5.9	8.8
Residential 1-		
acre	1.8	2.7
Transportation	1.7	2.6
Woods	9.9	14.6
Grand Total	67.6	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
16.2	67.6	24.0

Results:

- Biological condition "Very Poor"
- Habitat scores "Partially Supporting" and "Partially Degraded"
- While habitat is significantly impaired, biological community is in worse condition than would be expected for available habitat quality.
- Pool variability and substrate are degraded. Most other habiat features are sub-optimal.
- Sample dominated by worms (*Enchytreaidae*) and *Nemata*
- Stream type was identified as an E5, slope was 0.095 percent, and the median channel substrate was medium sand
- Typically, E channels are stable. This channel may be stable, though there may be excess fine sediments, which reduce pool quality.

- Maintain the protection of the riparian area
- Determine whether excess fine sediments can be managed
- Look for stormwater management opportunities on developed lands in basin.

Sawmill Creek Sampling Unit

Pool Variability

EPA Narrative Ranking

7

PS

IBI and Metric Scores	
Narrative Rating	Very Poor
Overall Index	1.29
Total Taxa Score	3
EPT Taxa Score	1
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	1
Ephemeroptera % Score	1
Scraper Taxa Score	1
% Climbers	1
Calculated Metric Values	
Total Taxa	14
EPT Taxa	1
Ephemeroptera Taxa	0
Intolerant Urban %	0
Ephemeroptera %	0
Scraper Taxa	0
% Climbers	0
Tubificinae Tubifex Pseudosmittia Physa Orthocladius/Cricotopus Nemata Nais Limnephilidae Diplocladius Culicoides Enchytraeidae Corynoneura Ormosia	15 3 1 2 15 26 2 1 3 4 27 2 1
Total Individuals	103

Physical Habitat EPA Rapid Bioassessment Bank Stability- Left Bank

		EPA Habitat Score	114
Pool Substrate Characterization	7		
Epifaunal Substrate/Available Cover	11	Vegetative Protection (Right Bank)	7
Channel Sinuosity	6	Vegetative Protection (Left Bank)	7
Channel Flow Status	15	Sediment Deposition	9
Channel Alteration	17	Riparian Vegetative Zone Width- Right Bank	10
Bank Stability- Right Bank	6	Riparian Vegetative Zone Width- Left Bank	6
Bank Stability- Left Bank	6	Pool Variability	7

Maryland Biological Stream Survey PHI

Drainage area (acres)	67.6	Instream Wood Debris	5
Remoteness	5	Bank Stability	12
Shading	80		
Epifaunal Substrate	3	PHI Score	69.44
Instream Habitat	11	PHI Narrative Ranking	PD
Water Chemistry			
Dissolved Oxygen (mg/L)	11.29	Specific Conductance (µS/cm)	432
pH	7.5	Temperature (°C)	4.69

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi ²)	0.106
Bankfull Width (ft)	13.5
Mean Bankfull Depth (ft)	1.2
Floodprone Width (ft)	150*
Entrenchment Ratio	11.1
Width to Depth Ratio	11.5

.5	Rosgen Stream Type	E5
.1	Adjustments?	↑W/D
0*	D50 (mm)	0.26
.2	Sinuosity	1.0*
8.5	Water Surface Slope (%)	0.095
06	Cross Sectional Area (ft ²)	15.8

*=estimated

Location/Site Access: Missing information Latitude/Longitude: 39.18064/76.63432

Land Use Analysis:

Land Use	Acres	% Area
Commercial	15.8	3.8
Industrial	4.7	1.1
Open Space	24.5	5.9
Residential 1/4-		
acre	131.1	31.8
Residential 1/8-		
acre	176.2	42.7
Residential 1-		
acre	9.4	2.3
Transportation	27.0	6.5
Water	0.2	0.0
Woods	23.7	5.7
Grand Total	412.4	100.0

Impervious (acres)	Total Area Above site	% Impervious
171.8	412.4	41.7

Results:

- Biological condition "Very Poor"
- Habitat scores "Partially Supporting" and "Degraded"
- Biological community is in worse condition than would be expected for available habitat quality.
- Except for an adequate riparian zone width on the left bank, all bank and riparian measures show degradation. Sediment deposition is also marginal.
- Sample dominated by midges (*Tvetnia*) and worms (*Nais*)
- Stream type was identified as an E5, slope was 0.245 percent, and the median channel substrate was fine sand
- Typically, E channels are stable. The "Very Poor" biological ratings along with marginal habitat ratings related to bank stability and substrates indicate that this reach is unstable

- Protect the riparian area.
- Determine adequacy of runoff management for the highly impervious areas in the catchment.

Sawmill Creek Sampling Unit

IBI and Metric Scores	
Narrative Rating	Very Poor
Overall Index	1.86
Total Taxa Score	5
EPT Taxa Score	1
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	1
Enhemerontera % Score	1
Scraper Taxa Score	1
	1
% Climbers	3
Calculated Metric Values	
Total Taxa	24
EPT Taxa	1
Ephemeroptera Taxa	0
Intolerant Urban %	1.8
Ephemeroptera %	0
Scraper Taxa	0
% Climbers	7.21
Taxa List	,
Caecidotea	2
Corynoneura	2
Gammarus	1
Helichus	1
Hemerodromia	1
Hydropsyche	2
Nois	12
Nemata	12
Orthocladius/Cricotopus	3
Paracladopelma	1
Physa	6
Enchytraeidae	2
Polypedilum	6
Prostoma	1
Pisidiidae	2
Tanytarsus	2
Thienemanniella	1
Tipula Tyotopia	3
Tubificinae	44
Thienemannimyia genus group	3
Phaenopsectra	3
Crangonyx	3

Total Individuals

111

Physical Habitat			
EPA Rapid Bioassessment			
Bank Stability- Left Bank	3	Pool Variability	10
Bank Stability- Right Bank	4	Riparian Vegetative Zone Width- Left Bank	9
Channel Alteration	13	Riparian Vegetative Zone Width- Right Bank	1
Channel Flow Status	17	Sediment Deposition	8
Channel Sinuosity	9	Vegetative Protection (Left Bank)	4
Epifaunal Substrate/Available Cover	14	Vegetative Protection (Right Bank)	5
Pool Substrate Characterization	13		
		EPA Habitat Score	110
		EPA Narrative Ranking	PS
Maryland Biological Stream	Survey I	PHI	
Drainage area (acres)	412.4	Instream Wood Debris	7
Remoteness	0	Bank Stability	7
Shading	30		
Epifaunal Substrate	11	PHI Score	57.10
Instream Habitat	14	PHI Narrative Ranking	D
Water Chemistry			

D

Dissolved Oxygen (mg/L)	10.57	Specific Conductance (μ S/cm)	387
pH	6.86	Temperature (°C)	13.17

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi ²)	0.64	Cross Sectional Area (ft ²)	13.7
Bankfull Width (ft)	11.0	Water Surface Slope (%)	0.245
Mean Bankfull Depth (ft)	1.2	Sinuosity	1.2
Floodprone Width (ft)	24.5	D50 (mm)	0.36
Entrenchment Ratio	2.2	Adjustments?	↑Sin
Width to Depth Ratio	8.8	Rosgen Stream Type	E5

Location/Site Access: Missing information Latitude/Longitude: 39.17198/76.6271

Land Use Analysis:

Land Use	Acres	% Area
Airport	133.7	4.1
Commercial	126.5	3.9
Industrial	170.5	5.2
Open Space	737.3	22.5
Residential 1/2-acre	27.4	0.8
Residential 1/4-acre	20.5	0.6
Residential 1/8-acre	442.2	13.5
Residential 1-acre	90.7	2.8
Residential Woods	38.5	1.2
Row Crops	4.8	0.1
Transportation	201.2	6.1
Utility	20.4	0.6
Water	5.4	0.2
Woods	1035.0	31.6
Grand Total	3273.3	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
787.1	3273.3	24.0

Results:

- Biological condition "Poor"
- Habitat scores "Non Supporting" and "Severely Degraded"
- Biological conditions are somewhat better than expected in relation to the level of observed habitat quality.
- Habitat ratings related to bank conditions and substrates were marginal and poor, except for one intact riparian zone
- Sample dominated by amphipods (*Gammarus*), worms (*Tubificinae*), and clams (*Pisidiidae*)
- Stream type was identified as an C5, slope was 0.075 percent, and the median channel substrate was fine sand
- Typically, C channels are stable, though marginal and poor habitat ratings related to bank conditions indicate that this reach is unstable

Recommendations:

• Investigate possibilities for restoring habitat features, including improved management of runoff from impervious surfaces

Sawmill Creek Sampling Unit

Narrative Rating	Poor
Overall Index	2.14
Total Taxa Score	5
EPT Taxa Score	1
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	1
Enhancement of Score	1
Epnemeroptera % Score	1
Scraper Taxa Score	1
% Climbers	5
Calculated Metric Values	
Total Taxa	26
EPT Taxa	0
Ephemeroptera Taxa	0
Intolerant Urban %	0
Enhemerontera %	0
Scraper Taxa	0
	11.01
% Climbers	11.0
Taxa List	10
Iubificinae	12
Labortio	2
	1
	1
Remerodromia	3
Gammarus	28
Cricotopus	4
Calopteryx	5
Argia	4
Apsectrotanypus	1
Alluaudomyia	1
Nanocladius	1
Hydroporinae	2
Corynoneura	3
Tvetenia	3
Tanytarsus	3
Pisidiidae	11
Orthocladius/Cricotopus	4
Slavina	1
Rheotanytarsus	4
Polypedilum	4
Planariidae	1
Parametriocnemus	6
Thienemannimyia genus group	1

Physical Habitat **EPA Rapid Bioassessment** Bank Stability- Left Bank Pool Variability 3 5 **Riparian** Vegetative Bank Stability- Right Bank 5 Zone Width- Left Bank 10 Riparian Vegetative Channel Alteration Zone Width- Right Bank 16 1 Channel Flow Status Sediment Deposition 18 5 Channel Sinuosity Vegetative Protection (Left Bank) 5 3 Epifaunal Substrate/Available Cover Vegetative Protection (Right Bank) 10 5 Pool Substrate Characterization 11 EPA Habitat Score 97 EPA Narrative Ranking NS **Maryland Biological Stream Survey PHI** Drainage area (acres) Instream Wood Debris 3273.3 9 Remoteness Bank Stability 1 1 Shading 15 PHI Score Epifaunal Substrate 2 34.85 Instream Habitat **PHI Narrative Ranking** 10 SD Water Chemistry Dissolved Oxygen (mg/L) Specific Conductance (µS/cm) 11.3 292 pН Temperature (°C) 7.18 7.53

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi ²)	5
Bankfull Width (ft)	24
Mean Bankfull Depth (ft)	1
Floodprone Width (ft)	2
Entrenchment Ratio	9
Width to Depth Ratio	2

.1	Cross Sectional Area (ft ²)	23.9
4.9	Water Surface Slope (%)	0.075
.0	Sinuosity	1.0*
29	D50 (mm)	0.13
.2	Adjustments?	↑Sin
26	Rosgen Stream Type	C5

*=estimated

Total Individuals

Location/Site Access: Missing information Latitude/Longitude: 39.17305/76.62378

Land Use Analysis:

Land Use	Acres	% Area
Airport	458.3	10.5
Commercial	201.4	4.6
Industrial	282.1	6.5
Open Space	968.1	22.3
Residential 1/2-acre	27.4	0.6
Residential 1/4-acre	117.6	2.7
Residential 1/8-acre	508.3	11.7
Residential 1-acre	109.6	2.5
Residential 2-acre	221.5	5.1
Residential Woods	47.0	1.1
Row Crops	4.9	0.1
Transportation	241.2	5.5
Utility	21.2	0.5
Water	6.9	0.2
Woods	1132.4	26.0
Grand Total	4347.9	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
1340	4347.9	31.0

Results:

- Biological condition "Poor"
- Habitat scores "Partially Supporting" and "Severely Degraded"
- Habitat assessment results were mixed for this site, but biological community observed is trending toward less than expected impairment based on the observed habitat quality.
- This reach has marginal bank stability and pool variability. The riparian zone is intact.
- Sample dominated by amphipods (*Gammarus*) and midges (*Tanytarsus*)
- Stream type was not identified, slope was 0.428 percent, and the median channel substrate was fine sand
- This channel was not classified as to type, but it is a shallow channel in a broad and accessible floodplain. It therefore has wetland features and may not be susceptible to erosion.

- Maintain the protection of the riparian area.
- Identify runoff management opportunities associated with upstream impervious areas.

Sawmill Creek Sampling Unit

IBI and Metric Scores	
Narrative Rating	Poor
Overall Index	2.14
Total Taxa Score	5
EPT Taxa Score	1
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	1
Enhemerontera % Score	1
Soraper Taxa Soore	1
% Climber	1 2
Colculated Matrie Values	3
	27
Total Taxa	27
EPT Taxa	1
Ephemeroptera Taxa	0
Intolerant Urban %	0
Ephemeroptera %	0
Scraper Taxa	0
% Climbers	19
Taxa List	
Helisoma	1
l'vetenia Phooteputersus	4
Cheotanytarsus	5
Macronychus	1
Slavina	2
Polypedilum	2
Pisidiidae	7
Fanytarsus	16
Orthocladius/Cricotopus	3
Paraphaenocladius	1
Nais	2
Limnodrilus	1
	5 1
Fubificinae	1 Q
Thienemannimyia genus group	5
Ancyronyx	1
Argia	4
Planariidae	1
Enchytraeidae	1
Chelifera	1
Cheumatopsyche	6
Corynoneura	1
rossaria	1
Jammarus	1/ 1
	1
fotal Individuals	100

Physical Habitat			
EPA Rapid Bioassessment			
Bank Stability- Left Bank	4	Pool Variability	5
Bank Stability- Right Bank	4	Riparian Vegetative Zone Width- Left Bank	10
Channel Alteration	20	Riparian Vegetative Zone Width- Right Bank	10
Channel Flow Status	17	Sediment Deposition	8
Channel Sinuosity	7	Vegetative Protection (Left Bank)	5
Epifaunal Substrate/Available Cover	10	Vegetative Protection (Right Bank)	5
Pool Substrate Characterization	12		
		EPA Habitat Score	117
		EPA Narrative Ranking	PS
Maryland Biological Stream	Survey	PHI	
Drainage area (acres)	4347.9	Instream Wood Debris	3
Remoteness	5	Bank Stability	8
Shading	20		
Epifaunal Substrate	5	PHI Score	38.97
Instream Habitat	11	PHI Narrative Ranking	SD

Water Chemistry Dissolved Oxygen (mg/L) Specific Conductance (μ S/cm) 11.65 459 pН Temperature (°C) 7.23 10.04

Geomorphic Assessments

Rosgen Level II Classification Data

19.4

0.428 1.0*

0.21

--Not

Classified

Drainage Area (mi ²)	6.8	Cross Sectional Area (ft ²)
Bankfull Width (ft)	29.1	Water Surface Slope (%)
Mean Bankfull Depth (ft)	0.7	Sinuosity
Floodprone Width (ft)	392	D50 (mm)
Entrenchment Ratio	13.5	Adjustments?
Width to Depth Ratio	43.7	Rosgen Stream Type
*=estimated		

04-12A

Sawmill Creek Sampling Unit

Location/Site Access: Missing information Latitude/Longitude: 39.15493/76.65805

Land Use Analysis:

Land Use	Acres	% Area
Commercial	41.7	3.5
Industrial	55.4	4.7
Open Space	160.9	13.7
Residential 1/2-acre	15.1	1.3
Residential 1/4-acre	5.6	0.5
Residential 1/8-acre	162.6	13.8
Residential 1-acre	46.2	3.9
Residential 2-acre	187.0	15.9
Row Crops	4.8	0.4
Transportation	50.8	4.3
Utility	3.0	0.3
Water	3.0	0.3
Woods	442.1	37.5
Grand Total	1178.2	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
215.8	1178.2	18.3

Results:

- Biological condition "Poor"
- Habitat scores "Supporting" and "Partially Degraded"
- Biological community is in worse condition than would be expected for available habitat quality.
- The riparian zone is intact, but banks are only marginally stable and sediment and pool features are also marginal
- Sample dominated by midges (Parametriocnemus, Tanytarsus, Rheotanytarsus)
- Stream type was identified as an E5, slope was 0.419 percent, and the median channel substrate was estimated as fine or medium sand
- Typically, E channels are stable, though this one is only marginally stable.

- Maintain the protection of the riparian area.
- Plan to manage any hydrologic effects associated with potential development
- Investigate potential sources of water quality problems

04-12A

Sawmill Creek Sampling Unit

IBI and Metric Scores	
Narrative Rating	Poor
Overall Index	2.14
Total Taxa Score	5
EPT Taxa Score	1
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	1
Enhamerontera % Score	1
	1
scraper Taxa Score	1
% Climbers	5
Calculated Metric Values	
Total Taxa	27
EPT Taxa	1
Ephemeroptera Taxa	0
Intolerant Urban %	6.86
Ephemeroptera %	0
Scraper Taxa	0
% Climbers	27.45
Taxa List	
Corynoneura	2
Polypedilum	5
Adiadesmyia Zavrelimvia	2
Rheocricotopus	2
Rheotanytarsus	11
Pisidiidae	3
Stegopterna	3
Stempellinella	7
Steneshironomus	1
Stilocladius	1
Synurella	2
Tanytarsus	15
Alluaudomyia	1
Tvetenia	4
Ancyronyx	1
Paratendines	3
Parametriocnemus	27
Paralauterborniella	1
Nigronia	1
Macronychus	3
Leptoceridae	1
Gomphidae	1
Thienemanniella	1
	2
Total Individuals	102

5	Pool Variability	10
5	Riparian Vegetative Zone Width- Left Bank	10
19	Riparian Vegetative Zone Width- Right Bank	10
18	Sediment Deposition	8
10	Vegetative Protection (Left Bank)	5
16	Vegetative Protection (Right Bank)	5
9		
	EPA Habitat Score	130
	EPA Narrative Ranking	S
Survey	PHI	
1178.2	Instream Wood Debris	8
9	Bank Stability	10
100		
12	PHI Score	76.91
16	PHI Narrative Ranking	PD
11.1	Specific Conductance (µS/cm)	248
6.64	Temperature (°C)	6.59
	5 19 18 10 16 9 Survey 1178.2 9 100 12 16 11.1 6.64	5 Pool Variability Riparian Vegetative 5 Zone Width- Left Bank Riparian Vegetative 19 Zone Width- Right Bank 18 Sediment Deposition 10 Vegetative Protection (Left Bank) 16 Vegetative Protection (Right Bank) 9 EPA Habitat Score EPA Narrative Ranking Survey PHI 1178.2 Instream Wood Debris 9 Bank Stability 100 12 12 PHI Score 16 PHI Narrative Ranking 11.1 Specific Conductance (µS/cm) 6.64 Temperature (°C)

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi ²)	1
Bankfull Width (ft)	Ģ
Mean Bankfull Depth (ft)	
Floodprone Width (ft)	2
Entrenchment Ratio	2
Width to Depth Ratio	4

.84	Cross Sectional Area (ft ²)	17.4
9.8	Water Surface Slope (%)	0.419
.8	Sinuosity	1.1
45	D50 (mm)	0.25*
5.1	Adjustments?	↑Sin
5.5	Rosgen Stream Type	E5

*=estimated

Location/Site Access: Missing information Latitude/Longitude: 39.16358/-76.6451

Land Use Analysis:

Land Use	Acres	% Area
Airport	95.9	18.7
Commercial	14.2	2.8
Open Space	224.1	43.7
Residential 1/2-acre	7.4	1.4
Residential 1/8-acre	0.3	0.1
Residential 2-acre	8.0	1.6
Transportation	13.6	2.7
Water	0.6	0.1
Woods	148.8	29.0
Grand Total	512.9	100.0

bove site	Impervious
512.9	20.4
	bove site 512.9

Results:

- Biological condition "Very Poor"
- Habitat scores "Partially Supporting" and "Partially Degraded"
- Biological community is in worse condition than would be expected for available habitat quality.
- Many habitat features are marginal, including bank stability and sediment deposition
- Sample dominated by crane flies (*Tipula*) and worms (*Lumbriculidae*)
- Stream type was identified as an E5, slope was 0.536 percent, and the median channel substrate was estimated as fine or medium sand
- Typically, E channels are stable. The "Very Poor" biological ratings along with marginal habitat ratings related to bank stability and substrates indicate that this reach is unstable

- Maintain and enhance the protection of the riparian area.
- Find opportunities to manage sources of fine sediments and excess runoff.

04-13A

Sawmill Creek Sampling Unit

IBI and Metric Scores	
Narrative Rating	Very Poor
Overall Index	1.86
Total Taxa Score	5
EPT Taxa Score	1
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	1
Ephemeroptera % Score	1
Scraper Taxa Score	1
% Climbers	3
Calculated Metric Values	
Total Taxa	24
EPT Taxa	1
Ephemeroptera Taxa	0
Intolerant Urban %	1.8
Ephemeroptera %	0
Scraper Taxa	0
% Climbers	7.2
Taxa List	
Caecidotea	2
Enchytraeidae	2
Corynoneura	2
Crangonyx	3
Gammarus	1
Helichus	1
Hemerodromia	1
Hydropsyche	2
Lumbriculidae	2
Nais	12
Nemata	1
Orthocladius/Cricotopus	3
Paracladopelma	1
Phaenopsectra	3
Physa	6
Polypedilum	6
Prostoma	1
Pisidiidae	2
Tanytarsus	2
Thienemanniella	1
Tipula	3
I vetenia	44
Tublicinae	1
i menemanimiyia genus group	3

Total Individuals

111

<u>Physical Habitat</u> EPA Rapid Bioassessment			
Bank Stability- Left Bank	4	Pool Variability	5
Bank Stability- Right Bank	6	Riparian Vegetative Zone Width- Left Bank	9
Channel Alteration	13	Riparian Vegetative Zone Width- Right Bank	6
Channel Flow Status	18	Sediment Deposition	8
Channel Sinuosity	6	Vegetative Protection (Left Bank)	5
Epifaunal Substrate/Available Cover	13	Vegetative Protection (Right Bank)	6
Pool Substrate Characterization	9		
		EPA Habitat Score	108
		EPA Narrative Ranking	PS
Maryland Biological Stream	Survey	PHI	
Drainage area (acres)	512.9	Instream Wood Debris	16
Remoteness	1	Bank Stability	10
Shading	90		
Epifaunal Substrate	9	PHI Score	70.44
Instream Habitat	13	PHI Narrative Ranking	PD
Water Chemistry			
Dissolved Oxygen (mg/L)	12.45	Specific Conductance (μ S/cm)	548
pH	7.12	Temperature (°C)	8.63

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi ²)	0.80
Bankfull Width (ft)	7.
Mean Bankfull Depth (ft)	0.0
Floodprone Width (ft)	47.
Entrenchment Ratio	6.′
Width to Depth Ratio	12.

301	Cross Sectional Area (ft ²)	4.1
.1	Water Surface Slope (%)	0.536
.6	Sinuosity	1.0
7.4	D50 (mm)	0.25*
.7	Adjustments?	↑Sin
2.2	Rosgen Stream Type	E5

04-15A

Sawmill Creek Sampling Unit

Location/Site Access: Located at end of Jones Rd. -7 0.18 km northwest Latitude/Longitude: 39.15566/-76.65801

Land Use Analysis:

Land Use	Acres	% Area
Airport	11.9	5.0
Commercial	1.5	0.6
Industrial	64.7	27.2
Open Space	55.3	23.3
Residential 1/4-acre	4.6	1.9
Residential 1/8-acre	6.5	2.7
Residential 2-acre	0.7	0.3
Transportation	18.0	7.6
Water	1.5	0.6
Woods	73.2	30.8
Grand Total	237.9	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
84.2	237.9	35.4

Results:

- Biological condition "Poor"
- Habitat scores "Partially Supporting" and "Partially Degraded"
- Habitat assessment results were mixed for this site, but biological community observed is trending toward more than expected impairment based on the observed habitat quality.
- This site has marginal bank stability, sediment deposition, and pool variability.
- Sample dominated by midges (*Corynoneura* and *Parametriocnemus*)
- Stream type was identified as an E5, slope was 0.844 percent, and the median channel substrate was estimated as fine or medium sand
- Typically, E channels are stable. The marginal habitat ratings related to bank stability and substrates indicate that this reach is somewhat unstable

- Protect the riparian area
- Investigate BMP retrofits to manage runoff from impervious areas

04-15A

Sawmill Creek Sampling Unit

IBI and Metric Scores	
Narrative Rating	Poor
Overall Index	2.14
Total Taxa Score	5
EPT Taxa Score	3
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	1
Enhomenenters % Score	1
Ephemeroptera % Score	1
Scraper Taxa Score	1
% Climbers	3
Calculated Metric Values	
Total Taxa	31
EPT Taxa	2
Ephemeroptera Taxa	0
Intolerant Urban %	5.71
Enhemerontera %	0
Soropor Taxo	0
	0
% Climbers	6.67
Taxa List	1
Polycentropus	1
Phaenopsectra	3
Peltodytes	1
Orthocladius/Cricotopus	8
Nigronia	3
Nanocladius	6
Parametriocnemus	10
Pheotapytarsus	5
Stepelmis	1
Stenochironomus	2
Tanytarsus	3
Tvetenia	4
Zavrelimyia	4
Bezzia/Palpomyia	1
Nais	7
Helichus	3
Hydroporinae	l
Polypedilum	0
Ablabesmvia	1
Micropsectra	1
Boyeria	1
Brillia	2
Cheumatopsyche	1
Corynoneura	17
Gompnus Labrundinia	1
Macronychus	3
Larsia	1
Total Individuals	105

<u>Physical Habitat</u> EPA Rapid Bioassessment			
Bank Stability- Left Bank	4	Pool Variability	8
Bank Stability- Right Bank	4	Riparian Vegetative Zone Width- Left Bank	2
Channel Alteration	17	Riparian Vegetative Zone Width- Right Bank	9
Channel Flow Status	19	Sediment Deposition	8
Channel Sinuosity	7	Vegetative Protection (Left Bank)	5
Epifaunal Substrate/Available Cover	12	Vegetative Protection (Right Bank)	5
Pool Substrate Characterization	10		
		EPA Habitat Score	110
		EPA Narrative Ranking	PS
Maryland Biological Stream	Survey 1	PHI	
Drainage area (acres)	237.9	Instream Wood Debris	9
Remoteness	6	Bank Stability	8
Shading	85		
Epifaunal Substrate	12	PHI Score	74.68
Instream Habitat	12	PHI Narrative Ranking	PD
Water Chemistry			
Dissolved Oxygen (mg/L)	7.63	Specific Conductance (µS/cm)	372
pH	6.93	Temperature (°C)	13.51

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi ²)	(
Bankfull Width (ft)	
Mean Bankfull Depth (ft)	
Floodprone Width (ft)	
Entrenchment Ratio	
Width to Depth Ratio	

Cross Sectional Area (ft²) 0.37 10.1 7.8 Water Surface Slope (%) 0.844 1.3 Sinuosity 1.0 D50 (mm) 0.25* 56 7.1 Adjustments? ↑Sin 6.1 **Rosgen Stream Type** E5

*=estimated

04-20A

Sawmill Creek Sampling Unit

Location/Site Access: Located at 0.2 miles behind 8th Ave. Latitude/Longitude: 39.17875/76.62132

Land Use Analysis:

Land Use	Acres	% Area
Airport	458.3	10.3
Commercial	260.1	5.8
Industrial	293.3	6.6
Open Space	982.8	22.0
Residential 1/2-acre	27.4	0.6
Residential 1/4-acre	121.4	2.7
Residential 1-acre	111.3	2.5
Residential 1/8 acre	508.5	11.4
Residential 2-acre	221.5	5.0
Residential Woods	47.0	1.1
Row Crops	4.9	0.1
Transportation	253.2	5.7
Utility	21.2	0.5
Water	6.9	0.2
Woods	1143.5	25.6
Grand Total	4461.2	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
1418.8	4461.2	31.8

Results:

- Biological condition "Very Poor"
- Habitat scores "Supporting" (PHI habitat assessment was incomplete)
- Biological community is in worse condition than would be expected for available habitat quality.
- Habitat features are mostly sub-optimal. Some substrate ratings indicate excess fine sediments.
- Sample dominated by worms (*Nais*), amphipods (*Gammarus*), and midges (*Orthocladius/Cricotopus*)
- Stream type was identified as an E5, slope was 0.016 percent, and the median channel substrate was fine to medium sand
- Typically, E channels are stable, as this one appears to be. The "Very Poor" biological ratings may be due to conditions other than habitat.

- Maintain the protection of the riparian area
- Investigate possible sources of water quality problems
- Ensure adequate management of runoff from impervious areas

04-20A

Sawmill Creek Sampling Unit

IBI and Metric Scores	
Narrative Rating	Very Poor
Overall Index	1.86
Total Taxa Score	3
EPT Taxa Score	1
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	1
Ephemeroptera % Score	1
Scraper Taxa Score	3
% Climbers	3
Calculated Metric Values	
Total Taxa	21
EPT Taxa	1
Ephemeroptera Taxa	0
Intolerant Urban %	9.09
Ephemeroptera %	0
Scraper Taxa	1
% Climbers	5.45

Taxa List

Tanytarsus
Orthocladius/Cricotopus
Gammarus
Hydrobaenus
Lebertia
Macronychus
Nais
Nanocladius
Oulimnius
Phaenopsectra
Polypedilum
Dubiraphia
Rheotanytarsus
Enchytraeidae
Thienemannimyia genus group
Potthastia
Cricotopus
Chaetocladius
Ancyronyx
Dicrotendipes
Cheumatopsyche

Physical Habitat EPA Rapid Bioassessment

Bank Stability- Left Bank	6
Bank Stability- Right Bank	7
Channel Alteration	20
Channel Flow Status	19
Channel Sinuosity	9
Epifaunal Substrate/Available Cover	12
Pool Substrate Characterization	15

EPA Narrative Ranking	
EPA Habitat Score	13
vegetative i fotection (Kight Bank)	
Vagatative Protection (Pight Bank)	
Vegetative Protection (Left Bank)	
Sediment Deposition	
Zone Width- Right Bank	1
Riparian Vegetative	
Zone Width- Left Bank	
Riparian Vegetative	
Pool Variability	

Maryland Biological Stream Survey PHI

Drainage area (acres)	4461.2	Instream Wood Debris	
Remoteness	7	Bank Stability	12
Shading	60		
Epifaunal Substrate	5	PHI Score	MISSING
Instream Habitat	17	PHI Narrative Ranking	MISSING
Water Chemistry			
Dissolved Oxygen (mg/L)	7.63	Specific Conductance (μ S/cm)	372
рН	6.93	Temperature (°C)	13.51

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi ²)	6.
Bankfull Width (ft)	16
Mean Bankfull Depth (ft)	2
Floodprone Width (ft)	1
Entrenchment Ratio	1(
Width to Depth Ratio	6

6.7	Rosgen Stream Type	E5
0.2	Adjustments?	↑Sin
170	D50 (mm)	0.25
2.5	Sinuosity	1.1
6.7	Water Surface Slope (%)	0.016
5.97	Cross Sectional Area (ft ²)	41.5

Total Individuals

Rhode River Sampling Unit

This page intentionally left blank.

Rhode River Sampling Unit

Location/Site Access: Located at SERC property Latitude/Longitude: 38.89299/-76.55795

Land Use Analysis:

Land Use	Acres	% Area
Open Space	62.0	12.9
Pasture/Hay	12.3	2.6
Residential 1/2-	7.6	1.6
acre		
Residential 1-	14.2	3.0
acre		
Residential 2-	87.5	18.2
acre		
Row Crops	0.2	0.0
Transportation	12.6	2.6
Water	1.1	0.2
Woods	283.9	59.0
Grand Total	481.4	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
23.6	481.4	4.9

Results:

- Biological condition "Poor"
- Habitat scores "Partially Supporting" and "Partially Degraded"
- Habitat assessment results were mixed for this site, but biological community observed is trending toward more than expected impairment based on the observed habitat quality.
- Bank and riparian features are largely intact, but substrate and pool features are degraded
- Sample dominated by stoneflies (*Paranemoura*) and isopods (*Caecidotea*)
- Stream type was identified as an C5, slope was 0.099 percent, and the median channel substrate was estimated as fine or medium sand
- Typically, C channels are stable, as this one appears to be. However, there are excess fine sediments, possibly originating upstream

- Maintain the protection of the riparian area.
- Investigate upstream sources of fine sediments.
- Determine need, feasibility of stormwater management on upstream developed lands.

Rhode River Sampling Unit

IBI and Metric Scores	
Narrative Rating	Poor
Overall Index	2.14
Total Taxa Score	3
EPT Taxa Score	3
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	5
Ephemeroptera % Score	1
Scraper Taxa Score	1
% Climbers	1
Calculated Metric Values	
Total Taxa	19
EPT Taxa	2
Ephemeroptera Taxa	0
Intolerant Urban %	64.08
Ephemeroptera %	0
Scraper Taxa	0
% Climbers	0
Taxa List	
Paraphaenocladius	1
Tubificinae	8
Limnodrilus	1
Paranemoura	34
Synurella	8
Stegopterna	4
Pisidiidae	1

Physical Habitat

I II yolcul Hubitut			
EPA Rapid Bioassessment			
Bank Stability- Left Bank	8	Pool Variability	7
Bank Stability- Right Bank	8	Riparian Vegetative Zone Width- Left Bank	10
Channel Alteration	20	Riparian Vegetative Zone Width- Right Bank	10
Channel Flow Status	16	Sediment Deposition	7
Channel Sinuosity	2	Vegetative Protection (Left Bank)	8
Epifaunal Substrate/Available Cover	11	Vegetative Protection (Right Bank)) 8
Pool Substrate Characterization	9		
		EPA Habitat Score	124
		EPA Narrative Ranking	PS
Maryland Biological Stream Drainage area (acres)	1 Surve 481.4	y PHI Instream Wood Debris	5
Remoteness	13	Bank Stability	16
Shading	85		
Epifaunal Substrate	3	PHI Score	70.42
Instream Habitat	11	PHI Narrative Ranking	PD
Water Chemistry			
Dissolved Oxygen (mg/L)	13.81	Specific Conductance (µS/cm)	113
pH	5 78	Temperature (°C)	0.53

Geomorphic Assessments

Rosgen Level II Classification Data

5.78

9.53

			,				
Dr	ainag	e Area (mi ²)		0.75	Cross Se	ctional Area	(ft^2) 8.9
Ba	nkful	l Width (ft)		15.2	Water Su	irface Slope	(%) 0.099
M	ean Ba	ankfull Dept	h (ft)	0.6	Sinuosity	7	1.1*
Fle	oodpro	one Width (f	t)	115	D50 (mm	ı)	0.25*
En	trencl	nment Ratio		7.5	Adjustme	ents?	↑ Sin
W	idth to	Depth Ratio	C	25.8	Rosgen S	Stream Type	e C5
*=	Estim	ated					
					13-03, Ri	ffe	
	-1	5	10	, t	5 20) 25	30
	-2						
ation	-3						
Beva	-4	f	-				
	-5	•					
	-6				4 ·		
	-7 -						

Width

Total Individuals

Simuliidae

Fossaria

Sciaridae

Nemata

Pseudosmittia Orthocladius/Cricotopus

Orthocladiinae Hydrobaenus

Enchytraeidae

Amphinemura

Diplocladius

Caecidotea

1 2 3

2

1

1

1

1

5 15

5 9

Rhode River Sampling Unit

Location/Site Access: Located at Rt 468 and Collins Rd Latitude/Longitude: 38.891/-76.56569

Land Use Analysis:

Land Use	Acres	% Area
Open Space	45.2	11.2
Pasture/Hay	3.2	0.8
Residential 1/2-	2.2	0.5
acre		
Residential 1-	6.0	1.5
acre		
Residential 2-	123.3	30.6
acre		
Row Crops	32.6	8.1
Transportation	8.3	2.1
Water	1.2	0.3
Woods	180.9	44.9
Grand Total	402.9	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
21.9	402.9	5.4

Results:

- Biological condition "Poor"
- Habitat scores "Not Supporting" and "Degraded"
- Habitat assessment results were mixed for this site, but biological community observed is trending toward less than expected impairment based on the observed habitat quality.
- Bank and substrate conditions are marginal, at best, despite relatively low land use pressures
- Sample dominated by midges (*Hydrobaenus*) and blackflies (*Stegopterna*)
- Stream type was identified as an C5, slope was 0.096 percent, and the median channel substrate was estimated as fine or medium sand
- Typically, C channels are stable.

- Maintain the protection of the riparian areas.
- Plan to manage effects of increased imperviousness, if development is pending.
- Treat existing developed lands as necessary and feasible.

Rhode River Sampling Unit

Narrative Rating	Poor
Overall Index	2.43
Total Taxa Score	3
EPT Taxa Score	3
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	5
Ephemeroptera % Score	1
Scraper Taxa Score	1
% Climbers	3
Calculated Metric Values	
Total Taxa	17
EPT Taxa	3
Ephemeroptera Taxa	0
Intolerant Urban %	37.14
Ephemeroptera %	0
Scraper Taxa	0
% Climbers	0.95

Taxa List

Hydrobaenus
Limnephilidae
Nanocladius
Nemouridae
Orthocladius/Cricotopus
Gonomyia
Stegopterna
Pilaria
Synurella
Tanytarsus
Paranemoura
Tubificinae
Pisidiidae
Enchytraeidae
Caecidotea
Spirosperma
Diplocladius

Physical Habitat EPA Rapid Bioassessment Bank Stability- Left Bank Bank Stability- Right Bank

Channel Alteration	20	
Channel Flow Status	19	
Channel Sinuosity	3	
Epifaunal Substrate/Available Cover	6	
Pool Substrate Characterization	8	

Vegetative Protection (Right Bank)	3
Vegetative Protection (Left Bank)	3
Sediment Deposition	5
Zone Width- Right Bank	4
Zone Width- Left Bank	10
Riparian Vegetative	-
Pool Variability	5
	Pool Variability Riparian Vegetative Zone Width- Left Bank Riparian Vegetative Zone Width- Right Bank Sediment Deposition Vegetative Protection (Left Bank) Vegetative Protection (Right Bank)

EPA Narrative Ranking	NS

Maryland Biological Stream Survey PHI

Drainage area (acres)	402.9	Instream Wood Debris	6
Remoteness	5	Bank Stability	6
Shading	100		
Epifaunal Substrate	2	PHI Score	55.76
Instream Habitat	6	PHI Narrative Ranking	D
Water Chemistry			
Dissolved Oxygen (mg/L)	12.06	Specific Conductance (µS/cm)	197
pH	5.91	Temperature (°C)	6.94

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi ²)
Bankfull Width (ft)
Mean Bankfull Depth (ft)
Floodprone Width (ft)
Entrenchment Ratio
Width to Depth Ratio

*=Estimated

Total Individuals

1 1 1

8 13

1

2

3

1 7

Rhode River Sampling Unit

Location/Site Access: Located at SERC Property back road Latitude/Longitude: 38.8912/-76.58152

Land Use Analysis:

Land Use	Acres	% Area
Commercial	1.9	0.8
Open Space	21.0	8.5
Pasture/Hay	0.4	0.2
Residential 1/2-		
acre	2.1	0.9
Residential 1-		
acre	13.0	5.3
Residential 2-		
acre	45.1	18.3
Row Crops	2.5	1.0
Transportation	5.8	2.4
Water	0.9	0.4
Woods	153.6	62.3
Grand Total	246.5	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
14.2	246.5	5.8

Results:

- Biological condition "Poor"
- Habitat scores "Partially Supporting" and "Partially Degraded"
- Habitat assessment results were mixed for this site, but biological community observed is trending toward more than expected impairment based on the observed habitat quality.
- The riparian zone is intact at the site, but bank stability, sediment deposition, and pool characteristics are marginal
- Sample dominated by blackflies (*Stegopterna*)
- Stream type was identified as an E5, slope was 0.95 percent, and the median channel substrate was estimated as fine or medium sand
- Typically, E channels are stable. The marginal habitat ratings related to bank stability and substrates indicate that this reach is unstable

- Maintain the protection of the riparian area.
- Plan for hydrologic effects of increased imperviousness
- Determine need, feasibility of BMP retrofits on existing developed lands.

Rhode River Sampling Unit

IBI and Metric Scores	
Narrative Rating	Poor
Overall Index	2.14
Total Taxa Score	3
EPT Taxa Score	3
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	5
Ephemeroptera % Score	1
Scraper Taxa Score	1
% Climbers	1
Calculated Metric Values	
Total Taxa	14
EPT Taxa	3
Ephemeroptera Taxa	0
Intolerant Urban %	86.79
Ephemeroptera %	0
Scraper Taxa	0
% Climbers	0
Pisidiidae Enchytraeidae Hydrobaenus Ironoquia Parakiefferiella Simuliidae Caecidotea Spirosperma Stegopterna Synurella Paranemoura Prosimulium Diplocladius Amphinemura	3 1 4 2 1 1 3 1 62 2 11 7 2 6
Total Individuals	106

Physical Habitat EPA Rapid Bioassessment			
Bank Stability- Left Bank	5	Pool Variability	7
Bank Stability- Right Bank	5	Riparian Vegetative Zone Width- Left Bank	10
Channel Alteration	20	Riparian Vegetative Zone Width- Right Bank	10
Channel Flow Status	16	Sediment Deposition	10
Channel Sinuosity	9	Vegetative Protection (Left Bank)	5
Epifaunal Substrate/Available Cover	13	Vegetative Protection (Right Bank)	5
Pool Substrate Characterization	3		
		EPA Habitat Score	118
		EPA Narrative Ranking	PS
Maryland Biological Stream	n Surv	ey PHI	
Drainage area (acres)	246.5	Instream Wood Debris	10
Remoteness	14	Bank Stability	10
Shading	85		
Epifaunal Substrate	4	PHI Score	76.61
Instream Habitat	13	PHI Narrative Ranking	PD
Water Chemistry			
Dissolved Oxygen (mg/L)	8.62	Specific Conductance (µS/cm)	228
pH	6.12	Temperature (°C)	8.98

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi ²)	0.
Bankfull Width (ft)	5
Mean Bankfull Depth (ft)	0
Floodprone Width (ft)	1
Entrenchment Ratio	2
Width to Depth Ratio	8

38	Cross Sectional Area (ft ²)	4.0
7	Water Surface Slope (%)	0.95
., .7	Sinuosity	1.3
25	D50 (mm)	0.25*
1.8	Adjustments?	↑Sin
.3	Rosgen Stream Type	E5

*=Estimated

Rhode River Sampling Unit

Location/Site Access: Located at Muddy Creek Road Latitude/Longitude: 38.89965/-76.56567

Land Use Analysis:

Land Use	Acres	% Area
Open Space	41.4	18.4
Pasture/Hay	11.8	5.3
Residential 1/2- acre	2.9	1.3
Residential 1- acre	7.1	3.2
Residential 2- acre	60.1	26.7
Row Crops	0.2	0.1
Transportation	5.4	2.4
Water	1.1	0.5
Woods	94.8	42.2
Grand Total	224.7	100.0

Impervious (acres)	Total Area Above site	% Impervious
13.2	224.7	5.9
13.2	224.7	5.9

Results:

- Biological condition "Very Poor"
- RBP habitat score "Partially Supporting" (PHI measures were incomplete)
- Biological indicator shows more impairment than would be expected based on habitat conditions alone.
- The riparian zone is intact, but bank, pool, and substrate conditions are poor or marginal
- Sample heavily dominated by blackflies (*Stegopterna*)
- Stream type was identified as an E5, slope was 0.349 percent, and the median channel substrate was fine sand
- Typically, E channels are not stable. The "Very Poor" biological ratings along with marginal habitat ratings related to bank stability and substrates indicate that this reach is unstable

- Maintain the protection of the riparian area.
- Restore habitat features
- Investigate possible water quality impacts associated with land uses upstream and correct as necessary and feasible.

Rhode River Sampling Unit

Narrative Rating	Very Poor
Overall Index	1.57
Total Taxa Score	1
EPT Taxa Score	1
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	5
Ephemeroptera % Score	1
Scraper Taxa Score	1
% Climbers	1
Calculated Metric Values	
Total Taxa	6
EPT Taxa	1
Ephemeroptera Taxa	0
Intolerant Urban %	89.52
Ephemeroptera %	0
Scraper Taxa	0
% Climbers	0

Taxa List

Diplocladius	
Simuliidae	
Caecidotea	
Paranemoura	
Synurella	
Stegopterna	

Total Individuals

105

EPA Rapid Bioassessment			
Bank Stability- Left Bank	5	Pool Variability	2
Bank Stability- Right Bank	5	Riparian Vegetative Zone Width- Left Bank	10
Channel Alteration	20	Zone Width- Right Bank	10
Channel Flow Status	18	Sediment Deposition	9
Channel Sinuosity	7	Vegetative Protection (Left Bank)	6
Epifaunal Substrate/Available Cover	8	Vegetative Protection (Right Bank)	6
Pool Substrate Characterization	8		
		EPA Habitat Score	114
		EPA Narrative Ranking	PS

Maryland Biological Stream Survey PHI

Drainage area (acres)	224.7	Instream Wood Debris	
Remoteness	13	Bank Stability	10
Shading	100		
Epifaunal Substrate	4	PHI Score (INCOMPLETE)	
Instream Habitat	8	PHI Narrative Ranking	
Water Chemistry			
Dissolved Oxygen (mg/L)	9.71	Specific Conductance (μ S/cm)	178
pH	5.8	Temperature (°C)	13.47

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi ²)	0.351	Cross Sectional Area (ft ²)	5.9
Bankfull Width (ft)	5.6	Water Surface Slope (%)	0.349
Mean Bankfull Depth (ft)	1.1	Sinuosity	1.1*
Floodprone Width (ft)	38	D50 (mm)	0.15
Entrenchment Ratio	6.8	Adjustments?	↑Sin
Width to Depth Ratio	5.3	Rosgen Stream Type	E5
*=Estimated			

Rhode River Sampling Unit

Location/Site Access: Located at SERC property road crossing Latitude/Longitude: 38.89057/-76.55767

Land Use Analysis:

Land Use	Acres	% Area
Commercial	1.1	0.2
Open Space	63.5	11.7
Pasture/Hay	12.3	2.3
Residential 1/2- acre	7.7	1.4
Residential 1- acre	14.6	2.7
Residential 2- acre	87.1	16.1
Row Crops	0.2	0.0
Transportation	12.7	2.4
Water	3.4	0.6
Woods	337.9	62.5
Grand Total	540.5	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
24.6	540.5	4.6

Results:

- Biological condition "Poor"
- Habitat scores "Non Supporting" and "Partially Degraded"
- Habitat conditions are mixed for this site, with one assessment method indicating impairment and one indicating some kind of enrichment.
- Riparian zones are inadequate and vegetative protection was poor on the right bank.
- Sample dominated by blackflies (*Simuliidae* and *Stegopterna*) and isopods (*Caecidotea*)
- The stream site was highly disturbed and classification by stream type was not possible
- pH is lower in this stream than in any other stream sampled in 2008

- Implement restoration and protection of the riparian area.
- Determine reason for stream acidity and mitigate if the source is unnatural
- Determine need, feasibility of BMP retrofits on developed lands.

Rhode River Sampling Unit

Narrative Rating Overall Index Total Taxa Score EPT Taxa Score Ephemeroptera Taxa Score Ephemeroptera Taxa Score Ephemeroptera % Score Scraper Taxa Score % Climbers Calculated Metric Values Total Taxa EPT Taxa Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Ironoquia Limnodrilus Pseudosmittia Nemoura Neoporus Hydrobaenus	Poor 2.14 3 3 1 5 1 1 1 1 1 1 2 0 58.93 0 0 0 0 1
Overall Index Total Taxa Score EPT Taxa Score Ephemeroptera Taxa Score Intolerant Urban % Score Scraper Taxa Score % Climbers Calculated Metric Values Total Taxa EPT Taxa Ephemeroptera Taxa Intolerant Urban % Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Ironoquia Limnodrilus Pseudosmittia Nemoura Neoporus Hydrobaenus Prosimulium	2.14 3 3 1 5 1 1 1 1 1 7 2 0 58.93 0 0 0 0 1
Total Taxa Score EPT Taxa Score Ephemeroptera Taxa Score Intolerant Urban % Score Ephemeroptera % Score Scraper Taxa Score % Climbers Calculated Metric Values Total Taxa EPT Taxa EPT Taxa Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Ironoquia Limnodrilus Pseudosmittia Nemoura Neoporus Hydrobaenus	3 3 1 5 1 1 1 1 1 7 2 0 58.93 0 0 0 0
EPT Taxa Score Ephemeroptera Taxa Score Intolerant Urban % Score Ephemeroptera % Score Scraper Taxa Score % Climbers Calculated Metric Values Total Taxa EPT Taxa Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Ironoquia Limnodrilus Pseudosmittia Nemoura Neoporus Hydrobaenus	3 1 5 1 1 1 17 2 0 58.93 0 0 0 0 1
Ephemeroptera Taxa Score Intolerant Urban % Score Ephemeroptera % Score Scraper Taxa Score % Climbers Calculated Metric Values Total Taxa EPT Taxa Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Ironoquia Limnodrilus Pseudosmittia Nemoura Neoporus Hydrobaenus	1 5 1 1 1 1 7 2 0 58.93 0 0 0 0
Intolerant Urban % Score Ephemeroptera % Score Scraper Taxa Score % Climbers Calculated Metric Values Total Taxa EPT Taxa Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Ironoquia Limnodrilus Pseudosmittia Nemoura Neoporus Hydrobaenus	5 1 1 1 17 2 0 58.93 0 0 0 0
Ephemeroptera % Score Scraper Taxa Score % Climbers Calculated Metric Values Total Taxa EPT Taxa Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Ironoquia Limnodrilus Pseudosmittia Nemoura Neoporus Hydrobaenus	1 1 17 2 0 58.93 0 0 0 0
Scraper Taxa Score % Climbers Calculated Metric Values Total Taxa EPT Taxa Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Ironoquia Limnodrilus Pseudosmittia Nemoura Neoporus Hydrobaenus Prosimulium	1 17 2 0 58.93 0 0 0
% Climbers Calculated Metric Values Total Taxa EPT Taxa Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Ironoquia Limnodrilus Pseudosmittia Nemoura Neoporus Hydrobaenus Prosimulium	1 17 2 0 58.93 0 0 0 0
Calculated Metric Values Total Taxa EPT Taxa Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Ironoquia Limnodrilus Pseudosmittia Nemoura Neoporus Hydrobaenus Prosimulium	17 2 0 58.93 0 0 0
Total Taxa EPT Taxa Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Ironoquia Limnodrilus Pseudosmittia Nemoura Neoporus Hydrobaenus Prosimulium	17 2 0 58.93 0 0 0
EPT Taxa Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Ironoquia Limnodrilus Pseudosmittia Nemoura Neoporus Hydrobaenus Prosimulium	2 0 58.93 0 0 0
Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Ironoquia Limnodrilus Pseudosmittia Nemoura Neoporus Hydrobaenus Prosimulium	0 58.93 0 0 0
Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Ironoquia Limnodrilus Pseudosmittia Nemoura Neoporus Hydrobaenus Prosimulium	58.93 0 0 0
Ephemeroptera % Scraper Taxa % Climbers Taxa List Ironoquia Limnodrilus Pseudosmittia Nemoura Neoporus Hydrobaenus Prosimulium	0 0 0 0
Scraper Taxa % Climbers Taxa List Ironoquia Limnodrilus Pseudosmittia Nemoura Neoporus Hydrobaenus Prosimulium	0
% Climbers Taxa List Ironoquia Limnodrilus Pseudosmittia Nemoura Neoporus Hydrobaenus Prosimulium	0
Taxa List Ironoquia Limnodrilus Pseudosmittia Nemoura Neoporus Hydrobaenus Prosimulium	1
Caecidotea Simulidae Stegopterna Synurella Tvetenia Tubificinae Pisidium Diplocladius Agabus Erioptera	2 1 6 1 3 3 21 31 31 5 1 1 2 1 1 1

<u>Physical Habitat</u> EPA Rapid Bioassessment			
Bank Stability- Left Bank	7	Pool Variability	8
Bank Stability- Right Bank	7	Riparian Vegetative Zone Width- Left Bank	2
Channel Alteration	7	Riparian Vegetative Zone Width- Right Bank	2
Channel Flow Status	15	Sediment Deposition	12
Channel Sinuosity	5	Vegetative Protection (Left Bank)	6
Epifaunal Substrate/Available Cover	8	Vegetative Protection (Right Bank)	6
Pool Substrate Characterization	3		
		EPA Habitat Score	88
		EPA Narrative Ranking	NS
Maryland Biological Stream	1 Surve	y PHI	
Drainage area (acres)	540.5	Instream Wood Debris	5
Remoteness	8	Bank Stability	14
Shading	85		
Epifaunal Substrate	8	PHI Score	66.49
Instream Habitat	8	PHI Narrative Ranking	PD
Water Chemistry			
Dissolved Oxygen (mg/L)	10.68	Specific Conductance (µS/cm)	147
pH	4.94	Temperature (°C)	9.3

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi ²)	Cross Sectional Area (ft ²)
Bankfull Width (ft)	Water Surface Slope (%)
Mean Bankfull Depth (ft)	Sinuosity
Floodprone Width (ft)	D50 (mm)
Entrenchment Ratio	Adjustments?
Width to Depth Ratio	Rosgen Stream Type

Due to highly disturbed conditions, no geomorphic assessment work was performed at this location.

Total Individuals

112

Rhode River Sampling Unit

Location/Site Access: Located at 3782 Hardesty Road Latitude/Longitude: 38.90108/-76.57753

Land Use Analysis:

Land Use	Acres	% Area
Open Space	34.0	24.2
Residential 1/2- acre	0.3	0.2
Residential 2- acre	58.7	41.7
Row Crops	1.2	0.9
Transportation	4.6	3.2
Woods	42.0	29.9
Grand Total	140.7	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
9.7	140.7	7.0

Results:

- Biological condition "Very Poor"
- Habitat scores "Not Supporting" and "Degraded"
- Habitat assessment results were mixed for this site, but biological community observed is trending toward more than expected impairment based on the observed habitat quality
- .Many of the habitat ratings are in the marginal range, including ratings related to bank stability and substrates
- Sample dominated by blackflies (*Stegopterna*) and midges (*Diplocladius*)
- Stream type was identified as an G5, slope was estimated as 1.0 percent, and the median channel substrate was estimated as fine or medium sand
- Typically, G channels are not stable. The "Very Poor" biological ratings along with marginal habitat ratings related to bank stability and substrates indicate that this reach is unstable

- Protect the riparian area
- Restore habitat features, if feasible
- Determine feasibility, need of installing BMPs on residential lands upstream.

Rhode River Sampling Unit

IBI and Metric Scores	
Narrative Rating	Very Poor
Overall Index	1.57
Total Taxa Score	1
EPT Taxa Score	1
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	5
Ephemeroptera % Score	1
Scraper Taxa Score	1
% Climbers	1
Calculated Metric Values	
Total Taxa	11
EPT Taxa	1
Ephemeroptera Taxa	0
Intolerant Urban %	49.06
Ephemeroptera %	0
Scraper Taxa	0
% Climbers	0
Taxa List	
Ironoquia	1
Enchytraeidae	2
Chaetocladius	5
Erioptera	1
Limnodrilus	1
Stegopterna	51
Nais	6
Tubificinae	1
Nemata	1
Prosimulium	1

Total Individuals

Diplocladius

106

36

<u>Physical Habitat</u> EPA Rapid Bioassessment			
Bank Stability- Left Bank	3	Pool Variability	3
Bank Stability- Right Bank	3	Riparian Vegetative Zone Width- Left Bank	2
Channel Alteration	18	Riparian Vegetative Zone Width- Right Bank	6
Channel Flow Status	15	Sediment Deposition	8
Channel Sinuosity	6	Vegetative Protection (Left Bank)	3
Epifaunal Substrate/Available Cover	10	Vegetative Protection (Right Bank)	3
Pool Substrate Characterization	8		
		EPA Habitat Score	88
		EPA Narrative Ranking	NS
Maryland Biological Stream	Surve	y PHI Instraam Wood Dahris	
Drainage area (acres)	140.7	Del Colline	13
Remoteness	6	Bank Stability	6
Shading	80		
Epifaunal Substrate	3	PHI Score	65.45
Instream Habitat	10	PHI Narrative Ranking	D
Water Chemistry			
Dissolved Oxygen (mg/L)	10.65	Specific Conductance (µS/cm)	116
pH	5.76	Temperature (°C)	8.6

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi ²)	0.22	Cross Sectional Area (ft ²)	4.7
Bankfull Width (ft)	6.9	Water Surface Slope (%)	1.0*
Mean Bankfull Depth (ft)	0.7	Sinuosity	1.0*
Floodprone Width (ft)	9.8	D50 (mm)	0.25*
Entrenchment Ratio	1.4	Adjustments?	↓ER
Width to Depth Ratio	10.2	Rosgen Stream Type	G5

13-11A

Rhode River Sampling Unit

Location/Site Access: Located at End of Collins Road straight ahead (southwest) Latitude/Longitude: 38.88725/-76.56444

Land Use Analysis:

Land Use	Acres	% Area
Commercial	5.5	0.8
Open Space	50.8	7.5
Pasture/Hay	22.3	3.3
Residential 1/2-		
acre	5.9	0.9
Residential 1-		
acre	25.3	3.7
Residential 2-		
acre	132.9	19.7
Row Crops	7.9	1.2
Transportation	18.2	2.7
Water	0.9	0.1
Woods	404.4	60.0
Grand Total	674.2	100.0

Impervious (acres)	Total Area Above site	% Impervious
34.6	674.2	5.1
0.110	07.112	0.11

Results:

- Biological condition "Very Poor"
- Habitat scores "Not Supporting" and "Degraded"
- Habitat assessment results were mixed for this site, but biological community observed is trending toward more than expected impairment based on the observed habitat quality.
- The riparian zone was intact only on the left side. Bank and sediment ratings indicate degraded habitat conditions.
- Sample dominated by midges (*Hydrobaenus* and *Orthocladius/Cricotopus*)
- Stream type was identified as an E5, slope was 0.153 percent, and the median channel substrate was estimated as fine or medium sand
- Typically, E channels are stable. The "Very Poor" biological ratings along with marginal habitat ratings related to bank stability and substrates indicate that this reach is unstable

- Implement restoration and protection of the riparian area.
- Restore instream habitat features, if feasible.
- Investigate need, feasibility of developed land stormwater BMP retrofits.

13-11A

Rhode River Sampling Unit

IBI and Metric Scores	
Narrative Rating	Very Poor
Overall Index	1.86
Total Taxa Score	3
EPT Taxa Score	3
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	3
Ephemeroptera % Score	1
Scraper Taxa Score	1
% Climbers	1
Calculated Metric Values	
Total Taxa	18
EPT Taxa	3
Ephemeroptera Taxa	0
Intolerant Urban %	10.38
Ephemeroptera %	0
Scraper Taxa	0
% Climbers	0
Taxa List Neoporus Krenopelopia Hydroporinae Tubificinae Synurella Pisidiidae Physa Parakiefferiella Orthocladius/Cricotopus Allocapnia Lymnaeidae Caecidotea Hydrobaenus Diplocladius Dero Enchytraeidae Nemoura Nemouridae	$ \begin{array}{c} 2\\1\\1\\1\\1\\1\\1\\1\\3\\1\\4\\49\\1\\1\\1\\1\\1\\4\end{array} $
Total Individuals	106

EPA Rapid Bioassessment			
Bank Stability- Left Bank	3	Pool Variability	7
Bank Stability- Right Bank	4	Riparian Vegetative Zone Width- Left Bank	10
Channel Alteration	18	Zone Width- Right Bank	3
Channel Flow Status	19	Sediment Deposition	6
Channel Sinuosity	6	Vegetative Protection (Left Bank)	3
Epifaunal Substrate/Available Cove	er 8	Vegetative Protection (Right Bank)	4
Pool Substrate Characterization	8		
			00
		EPA Habitat Score	<u> 99</u>
		EPA Habitat Score EPA Narrative Ranking	NS
Maryland Biological Strea Drainage area (acres)	m Surve 674.2	EPA Habitat Score EPA Narrative Ranking y PHI Instream Wood Debris	8
Maryland Biological Strea Drainage area (acres) Remoteness	m Surve 674.2 2	EPA Habitat Score EPA Narrative Ranking y PHI Instream Wood Debris Bank Stability	8 7
Maryland Biological Strea Drainage area (acres) Remoteness Shading Epifaunal Substrate	m Surve 674.2 2 90 2	EPA Habitat Score EPA Narrative Ranking y PHI Instream Wood Debris Bank Stability PHI Score	93 NS 8 7 52.79
Maryland Biological Strea Drainage area (acres) Remoteness Shading Epifaunal Substrate Instream Habitat	m Surve 674.2 2 90 2 8	EPA Habitat Score EPA Narrative Ranking A PHI Instream Wood Debris Bank Stability PHI Score PHI Narrative Ranking	8 7 52.79 D
Maryland Biological Strea Drainage area (acres) Remoteness Shading Epifaunal Substrate Instream Habitat Water Chemistry	m Surve 674.2 2 90 2 8	EPA Habitat Score EPA Narrative Ranking by PHI Instream Wood Debris Bank Stability PHI Score PHI Narrative Ranking	8 7 52.79 D
Maryland Biological Strea Drainage area (acres) Remoteness Shading Epifaunal Substrate Instream Habitat Water Chemistry Dissolved Oxygen (mg/L)	m Surve 674.2 2 90 2 8 11.51	EPA Habitat Score EPA Narrative Ranking by PHI Instream Wood Debris Bank Stability PHI Score PHI Narrative Ranking Specific Conductance (µS/cm)	93 NS 8 7 52.79 D 96

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi ²)	1.1	Cross Sectional Area (ft ²)	15.1
Bankfull Width (ft)	12.6	Water Surface Slope (%)	0.153
Mean Bankfull Depth (ft)	1.2	Sinuosity	1.0*
Floodprone Width (ft)	278	D50 (mm)	0.25*
Entrenchment Ratio	22.1	Adjustments?	↑Sin
Width to Depth Ratio	10.4	Rosgen Stream Type	E5

*=Estimated

13-12A

Rhode River Sampling Unit

Location/Site Access: Located at Wharthon Road crossing, powerline R.O.W. Latitude/Longitude: 38.86711/-76.6043

Land Use Analysis:

Land Use	Acres	% Area
Commercial	11.0	2.6
Open Space	47.1	11.1
Residential 1/2- acre	1.1	0.3
Residential 1- acre	5.8	1.4
Residential 2- acre	101.4	24.0
Row Crops	4.4	1.0
Transportation	12.1	2.9
Utility	23.7	5.6
Woods	216.8	51.2
Grand Total	423.4	100.0

Impervious (acres)	Total Area Above site	% Impervious
30.9	423.4	7.2
30.9	423.4	1.2

Results:

- Biological condition "Poor"
- Habitat scores "Partially Supporting" and "Severely Degraded"
- Habitat assessment results were mixed for this site, but biological community observed is trending toward less than expected impairment based on the observed habitat quality.
- Many habitat ratings were marginal
- Sample dominated by blackflies, midges, isopods, and snails
- Stream type was identified as an E5, slope was 0.579 percent, and the median channel substrate was estimated as fine or medium sand
- Typically, E channels are stable, but this channel was rated with only marginal bank stability. Fine sediments contribute to marginal epifaunal substrate. Has low ER for E type.

- Protect the riparian area.
- Allow the channel to stabilize on its own.
- Determine if riparian management associated with the power lines is undermining natural channel evolution.
- Determine need, feasibility of installing stormwater management on developed lands upstream.

13-12A

Rhode River Sampling Unit

IBI and Metric Scores	
Narrative Rating	Poor
Overall Index	2.43
Total Taxa Score	5
EPT Taxa Score	1
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	5
Ephemeroptera % Score	1
Scraper Taxa Score	1
% Climbors	2
Colculated Matrie Values	5
	25
	25
EPTTaxa	1
Ephemeroptera Taxa	0
Intolerant Urban %	31.43
Ephemeroptera %	0
Scraper Taxa	0
% Climbers	0.95
Taxa List Tvetenia Pilaria Planariidae Prosimulium Pisidiidae Stenelmis Tanytarsus Tipula Physa Tubificinae Thienemanniella Corynoneura Pisidium Ancyronyx Paraphaenocladius Dasyhelea Diplocladius Gammarus Lumbricidae Lymnaeidae Nais Neophylax Orthocladius/Cricotopus Parametriocnemus Limnodrilus	$ \begin{array}{c} 1\\ 1\\ 1\\ 27\\ 1\\ 1\\ 1\\ 1\\ 1\\ 2\\ 1\\ 1\\ 2\\ 3\\ 5\\ 6\\ 14\\ 1\\ 1 \end{array} $
Total Individuals	105

Physical Habitat			
EPA Rapid Bioassessment			
Bank Stability- Left Bank	4	Pool Variability	3
Bank Stability- Right Bank	4	Riparian Vegetative Zone Width- Left Bank	4
Channel Alteration	17	Riparian Vegetative Zone Width- Right Bank	7
Channel Flow Status	18	Sediment Deposition	9
Channel Sinuosity	9	Vegetative Protection (Left Bank)	7
Epifaunal Substrate/Available Cove	er 7	Vegetative Protection (Right Bank)	7
Pool Substrate Characterization	8		
		FPA Habitat Score	104
		El A Habitat Score	
		EPA Narrative Ranking	PS
Maryland Biological Strea	m Surve	PA Narrative Ranking PHI Instream Wood Debris	PS
Maryland Biological Strea Drainage area (acres) Remoteness	m Surve 423.4	y PHI Instream Wood Debris Bank Stability	PS 13
Maryland Biological Strea Drainage area (acres) Remoteness Shading	m Surve 423.4 5 20	y PHI Instream Wood Debris Bank Stability	PS 13 9
Maryland Biological Strea Drainage area (acres) Remoteness Shading Epifaunal Substrate	m Surve 423.4 5 20 3	PA Narrative Ranking PHI Instream Wood Debris Bank Stability PHI Score	PS 13 9 49.80
Maryland Biological Strea Drainage area (acres) Remoteness Shading Epifaunal Substrate Instream Habitat	m Surve 423.4 5 20 3 7	y PHI Instream Wood Debris Bank Stability PHI Score PHI Narrative Ranking	PS 13 9 49.80 SD
Maryland Biological Strea Drainage area (acres) Remoteness Shading Epifaunal Substrate Instream Habitat Water Chemistry	m Surve 423.4 5 20 3 7	PA Narrative Ranking PHI Instream Wood Debris Bank Stability PHI Score PHI Narrative Ranking	PS 13 9 49.80 SD
Maryland Biological Strea Drainage area (acres) Remoteness Shading Epifaunal Substrate Instream Habitat Water Chemistry Dissolved Oxygen (mg/L)	m Surve 423.4 5 20 3 7 13.47	 EPA Narrative Ranking PHI Instream Wood Debris Bank Stability PHI Score PHI Narrative Ranking Specific Conductance (µS/cm) 	PS 13 9 49.80 SD 307

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi ²)	0.66
Bankfull Width (ft)	6.4
Mean Bankfull Depth (ft)	2.5
Floodprone Width (ft)	18
Entrenchment Ratio	2.8
Width to Depth Ratio	2.5

6	Cross Sectional Area (ft ²)	16.0
1	Water Surface Slope (%)	0.579
5	Sinuosity	1.1
3	D50 (mm)	0.25*
3	Adjustments?	↑Sin
5	Rosgen Stream Type	E5

*=Estimated

13-13A

Rhode River Sampling Unit

Location/Site Access: Located at 3782 Hardesty Road Latitude/Longitude: 38.89928/-76.57619

Land Use Analysis:

Land Use	Acres	% Area
Open Space	38.9	16.5
Pasture/Hay	1.0	0.4
Residential 1/2-	03	0.1
acre	0.5	0.1
Residential 2-	96.3	40.7
acre	90.5	40.7
Row Crops	17.3	7.3
Transportation	4.7	2.0
Woods	78.0	33.0
Grand Total	236.5	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
14.7	236.5	6.2

Results:

- Biological condition "Very Poor"
- Habitat scores "Not Supporting" and "Degraded"
- Biological community is appropriate for observed habitat quality.
- All riparian and bank measures are rated as poor. However, the channel alteration rating indicates that the channel form is somewhat natural
- Sample dominated by worms (*Nais*), midges (*Diplocladius*), and clams (*Pisidiidae*)
- Stream type was identified as an G5c, slope was 0.463 percent, and the median channel substrate was estimated as fine or medium sand
- Typically, G channels are not stable. The "Very Poor" biological ratings along with poor habitat ratings related to bank stability and substrates indicate that this reach is unstable

- Restore and protect riparian areas.
- Allow the channel to stabilize naturally.
- Investigate possible upstream stressor inputs.

13-13A

Rhode River Sampling Unit

IBI and Metric Scores	
Narrative Rating	Very Poor
Overall Index	1.86
Total Taxa Score	3
EPT Taxa Score	1
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	3
Ephemeroptera % Score	1
Scraper Taxa Score	1
% Climbers	3
Calculated Metric Values	
Total Taxa	20
EPT Taxa	0
Ephemeroptera Taxa	0
Intolerant Urban %	11.3
Ephemeroptera %	0
Scraper Taxa	0
% Climbers	1.74
Taxa List Polypedilum	2
Pristina	1
Prosimulium	1
Rheocricotopus	1
Pisidiidae	9
Stegopterna	11
Synurella Culicoides	1
Ephemeroptera % Scraper Taxa % Climbers Taxa List Polypedilum Pristina Prosimulium Rheocricotopus Pisidiidae Stegopterna Synurella Culicoides	0 0 1.74 2 1 1 1 9 11 1 1 1

Stegopterna
Synurella
Culicoides
Tubificinae
Tipula
Hydrobaenus
Paraphaenocladius
Orthocladius/Cricotopus
Nemata
Nais
Limnophyes
Limnodrilus
Enchytraeidae
Diplocladius
Pisidium
Polypedilum

Physical Habitat

EPA Rapid Bloassessment	
Bank Stability- Left Bank	2
Bank Stability- Right Bank	2
Channel Alteration	18
Channel Flow Status	15
Channel Sinuosity	3
Epifaunal Substrate/Available Cover	5
Pool Substrate Characterization	5

Zone Width- Right Bank Sediment Deposition Vegetative Protection (Left Bank) Vegetative Protection (Right Bank)	2 6 3 3
Zone Width- Right Bank Sediment Deposition Vegetative Protection (Left Bank) Vegetative Protection (Right Bank)	2 6 3 3
Zone Width- Right Bank Sediment Deposition Vegetative Protection (Left Bank)	2 6 3
Sediment Deposition	2 6
Zone Width- Right Bank	2
7 W' 145 D' -1-4 D1-	2
Riparian Vegetative	-
Riparian Vegetative Zone Width- Left Bank	1
Pool Variability	3
	Pool Variability Riparian Vegetative Zone Width- Left Bank Riparian Vegetative

NS

EPA Narrative Ranking

Maryland Biological Stream Survey PHI

Drainage area (acres)	236.5	Instream Wood Debris	9
Remoteness	9	Bank Stability	4
Shading	75		
Epifaunal Substrate	3	PHI Score	57.25
Instream Habitat	5	PHI Narrative Ranking	D
Water Chemistry			
Dissolved Oxygen (mg/L)	10.98	Specific Conductance (μ S/cm)	169
рН	5.83	Temperature (°C)	7.01

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi ²)	(
Bankfull Width (ft)	
Mean Bankfull Depth (ft)	
Floodprone Width (ft)	
Entrenchment Ratio	
Width to Depth Ratio	

*=Estimated

6 1

1 1

1

1

34

1 8

4

21 9

2

13-14A

Rhode River Sampling Unit

Location/Site Access: Located at Grey Beech Court, 0.15m North Latitude/Longitude: 38.89111/-76.58776

Land Use Analysis:

Land Use	Acres	% Area
Commercial	1.9	1.0
Open Space	20.2	11.0
Pasture/Hay	0.4	0.2
Residential 1-	13.0	71
acre	15.0	/.1
Residential 2-	39.2	21.3
acre	57.2	21.5
Row Crops	2.5	1.4
Transportation	5.9	3.2
Water	0.9	0.5
Woods	99.7	54.3
Grand Total	183.7	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
12.9	183.7	7.0

Results:

- Biological condition "Very Poor"
- Habitat scores "Not Supporting" and "Partially Degraded"
- Habitat assessment results were mixed for this site, but biological community observed is trending toward more than expected impairment based on the observed habitat quality.
- The riparian zone is intact at this site, but bank stability and pool characteristic ratings are poor
- Sample dominated by midges (*Diplocladius*, *Rheocricotopus*, *Corynoneura*)
- Stream type was identified as an G5c, slope was 0.469 percent, and the median channel substrate was fine sand
- Typically, G channels are not stable. The "Very Poor" biological ratings along with poor habitat ratings related to bank stability and substrates indicate that this reach is unstable.

- Maintain the protection of the riparian area.
- Investigate inconsistencies between poor biological and habitat ratings and the remoteness and low imperviousness of the site
- Determine need, feasibility of adding stormwater management on developed lands.

13-14A

Rhode River Sampling Unit

IBI and Metric Scores	
Narrative Rating	Very Poor
Overall Index	1.57
Total Taxa Score	3
EPT Taxa Score	3
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	1
Ephemeroptera % Score	1
Scraper Taxa Score	1
% Climbers	1
Calculated Metric Values	
Total Taxa	20
EPT Taxa	3
Ephemeroptera Taxa	0
Intolerant Urban %	6.6
Ephemeroptera %	0
Scraper Taxa	0
% Climbers	0
Taxa List	
Limnephilidae	9
Parametriocnemus	2
Prosimulium	1
Rheocricotopus	25
Simuliidae	1
Pisidiidae	2
Stegopterna	2
Paranemoura	1
Gammarus	1
Zavrelimyia	4
Chaetocladius	1
Agabus	1
Krenopelopia	1
Caecidotea	2
Ironoquia	2
Chrysops	1

<u>Physical Habitat</u>		
EPA Rapid Bioassessment		
Bank Stability- Left Bank		
Bank Stability- Right Bank		

Channel Alteration	20	
Channel Flow Status	10	
Channel Sinuosity	6	
Epifaunal Substrate/Available Cover	8	
Pool Substrate Characterization	3	

	EPA Habitat Score	90
3		
8	Vegetative Protection (Right Bank)	2
6	Vegetative Protection (Left Bank)	2
10	Sediment Deposition	10
20	Zone Width- Right Bank	10
2	Zone Width- Left Bank	10
	Riparian Vegetative	
2	Pool Variability	5

EPA Narrative Ranking

NS

3.9 0.469

1.0

0.12

↑Sin

G5c

Maryland Biological Stream Survey PHI

. 8	•		
Drainage area (acres)	183.7	Instream Wood Debris	7
Remoteness	13	Bank Stability	4
Shading	100		
Epifaunal Substrate	3	PHI Score	68.25
Instream Habitat	8	PHI Narrative Ranking	PD
Water Chemistry			
Dissolved Oxygen (mg/L)	10.31	Specific Conductance (µS/cm)	81
pH	6.58	Temperature (°C)	8.48

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi ²)	0.29	Cross Sectional Area (ft ²)
Bankfull Width (ft)	6.0	Water Surface Slope (%)
Mean Bankfull Depth (ft)	0.7	Sinuosity
Floodprone Width (ft)	7.8	D50 (mm)
Entrenchment Ratio	1.3	Adjustments?
Width to Depth Ratio	9.1	Rosgen Stream Type

Total Individuals

Corynoneura

Culicoides

Dasyhelea

Diplocladius

11

1

1

37

West River Sampling Unit

This page intentionally left blank.

West River Sampling Unit

Location/Site Access: Located at Missing information Latitude/Longitude: 38.86187/-76.57823

Land Use Analysis:

Land Use	Acres	% Area
Open Space	11.8	7.3
Pasture/Hay	3.5	2.2
Residential 1-	44	27
acre		2.1
Residential 2-	23.5	14.6
acre		1.10
Row Crops	50.4	31.2
Transportation	2.0	1.2
Utility	10.6	6.6
Water	0.1	0.1
Woods	55.2	34.1
Grand Total	161.7	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
4.8	161.7	3.0

Results:

- Biological condition "Very Poor"
- Habitat scores "Not Supporting" and "Degraded"
- Habitat assessment results were mixed for this site, but biological community observed is trending toward more than expected impairment based on the observed habitat quality.
- Riparian features are intact, but bank, substrate, and pool features are degraded
- Sample heavily dominated by midges (*Chaetocladius*) and worms (*Enchytraeidae*)
- Stream type was identified as an G5c, slope was 0.55 percent, and the median channel substrate was estimated as fine or medium sand
- Typically, G channels are not stable. This channel has marginal and poor bank conditions and excess fine sediments, indicating possible instability

- Maintain the protection of the riparian area.
- Investigate upstream sources of fine sediments.
- Plan for hydrologic stability with potential increases in imperviousness.
- Determine need, feasibility of BMP implementation on agricultural, developed lands.

West River Sampling Unit

Pool Variability

Very Poor
1.57
3
3
1
1
1
1
1
15
3
0
1.92
0
0
0
$ \begin{array}{c} 1 \\ 4 \\ 2 \\ 1 \\ 2 \\ 1 \\ 4 \\ 2 \\ 1 \\ 5 \\ 62 \\ 16 \\ 1 \\ 1 \end{array} $

Physical Habitat EPA Rapid Bioassessment Bank Stability- Left Bank

Bank Stability- Right Bank	3	Riparian Vegetative Zone Width- Left Bank
Channel Alteration	20	Riparian Vegetative Zone Width- Right Bank
Channel Flow Status	14	Sediment Deposition
Channel Sinuosity	5	Vegetative Protection (Left Bank)
Epifaunal Substrate/Available Cover	7	Vegetative Protection (Right Bank)
Pool Substrate Characterization	8	

2

EPA Habitat Score	100
EPA Narrative Ranking	NS

5

10

10 11

2

3

Maryland Biological Stream Survey PHI

Drainage area (acres)	161.7	Instream Wood Debris	8
Remoteness	8	Bank Stability	5
Shading	100		
Epifaunal Substrate	3	PHI Score	64.81
Instream Habitat	7	PHI Narrative Ranking	D
Water Chemistry			
Dissolved Oxygen (mg/L)	13.03	Specific Conductance (µS/cm)	151
pH	6.17	Temperature (°C)	6.85

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi2)	0.25	Cross Sectional Area (ft ²)	3.0
Bankfull Width (ft)	5.3	Water Surface Slope (%)	0.55
Mean Bankfull Depth (ft)	0.6	Sinuosity	1.04
Floodprone Width (ft)	8.7	D50 (mm)	0.25*
Entrenchment Ratio	1.6	Adjustments?	↓ER, ↑Sin
Width to Depth Ratio	9.6	Rosgen Stream Type	G5c
*=Estimated			

Total Individuals

West River Sampling Unit

Location/Site Access: Located at six mile Horse Farm Latitude/Longitude: 38.852078/-76.572066

Land Use Analysis:

Land Use	Acres	% Area
Commercial	0.4	0.1
Open Space	21.2	4.5
Pasture/Hay	37.9	8.1
Residential 1/2- acre	6.5	1.4
Residential 1- acre	4.2	0.9
Residential 2- acre	39.4	8.4
Row Crops	39.6	8.5
Transportation	6.0	1.3
Utility	16.8	3.6
Woods	294.3	63.1
Grand Total	466.2	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
9.9	466.2	2.1

Results:

- Biological condition "Poor"
- Habitat scores "Partially Supporting" and "Degraded"
- Biological community is appropriate for observed habitat quality.
- Riparian features are largely intact, but substrate and pool features are marginal
- Sample dominated by midges (*Hydrobaenus*) and stoneflies (*Nemouridae*)
- Stream type was identified as an B5c, slope was 0.47 percent, and the median channel substrate was estimated as fine or medium sand
- Typically, B channels are stable. However, this channel has only marginal bank, substrate, and pool features, indicating that some instability exists

- Maintain protection of the riparian area.
- Investigate upstream sources of fine sediments.
- Plan for hydrologic stability with potential increases in imperviousness.
- Determine need, feasibility of BMP installation on agricultural, developed lands upstream.

West River Sampling Unit

Narrative Rating	Poor
Overall Index	2.14
Total Taxa Score	3
EPT Taxa Score	3
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	5
Ephemeroptera % Score	1
Scraper Taxa Score	1
% Climbers	1
Calculated Metric Values	
Total Taxa	17
EPT Taxa	4
Ephemeroptera Taxa	0
Intolerant Urban %	487
Ephemeroptera %	0
Scraper Taxa	0
% Climbers	0
70 Chinders	0
Taxa List Orthocladiinae Orthocladius/Cricotopus Rheocricotopus Nemouridae Tubificinae Orthocladius Stegopterna Limnephilidae Ironoquia Hydrobaenus Diplocladius Chaetocladius Enchytraeidae Caecidotea Amphinemura Limnodrilus Prosimulium	1 5 1 25 1 2 16 1 2 36 3 5 1 3 1 1 11

<u>Physical Habitat</u> EPA Rapid Bioassessment			
Bank Stability- Left Bank	5	Pool Variability	4
Bank Stability- Right Bank	6	Riparian Vegetative Zone Width- Left Bank	10
Channel Alteration	20	Riparian Vegetative Zone Width- Right Bank	10
Channel Flow Status	13	Sediment Deposition	10
Channel Sinuosity	2	Vegetative Protection (Left Bank)	5
Epifaunal Substrate/Available Cover	· 7	Vegetative Protection (Right Bank)	6
Pool Substrate Characterization	6		
		EPA Habitat Score	104
		EPA Narrative Ranking	PS
Maryland Biological Stream	n Surv	7 ey PHI Instream Wood Debris	5
Remoteness	400.2	Bank Stability) 11
Shading	100		11
Epifaunal Substrate	3	PHI Score	66.00
Instream Habitat	7	PHI Narrative Ranking	D
Water Chemistry			
Dissolved Oxygen (mg/L)	11.35	Specific Conductance (µS/cm)	154
pH	6.17	Temperature (°C)	10.68

Geomorphic Assessments

Rosgen Level II Classification Data

7.0

0.47 1.0*

0.25*

†Sin

B5c

Drainage Area (mi ²)	0.73	Cross Sectional Area (ft ²)
Bankfull Width (ft)	10.5	Water Surface Slope (%)
Mean Bankfull Depth (ft)	0.7	Sinuosity
Floodprone Width (ft)	17	D50 (mm)
Entrenchment Ratio	1.6	Adjustments?
Width to Depth Ratio	15.8	Rosgen Stream Type

Total Individuals

West River Sampling Unit

Location/Site Access: Located at at Rollbys Run Road crossing Latitude/Longitude: 38.86032/76.57635

Land Use Analysis:

Land Use	Acres	% Area
Open Space	11.8	6.7
Pasture/Hay	3.5	2.0
Residential 1-		
acre	4.4	2.5
Residential 2-		
acre	25.4	14.5
Row Crops	53.2	30.3
Transportation	2.0	1.1
Utility	10.6	6.0
Water	0.1	0.1
Woods	64.5	36.7
Grand Total	175.7	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
5.1	175.7	2.9

Results:

- Biological condition "Very Poor"
- Habitat scores "Partially Supporting" and "Partially Degraded"
- Biological community is in worse condition than would be expected for available habitat quality.
- Riparian features are largely intact, but substrate and pool features are marginal
- Sample heavily dominated by midges (*Chaetocladius*)
- Stream type was identified as an B5c, slope was 0.276 percent, and the median channel substrate was estimated as fine or medium sand
- Typically, B channels are stable. This channel appears to be reasonably stable. Low W/D ratio for a B type.

- Maintain protection of the riparian area.
- Plan for hydrologic stability with potential increases in imperviousness.
- Determine need, feasibility of BMP installation or retrofits on developed and agricultural lands.

West River Sampling Unit

EPA Narrative Ranking

5

10

10

13

6

8

122

PS

Narrative Rating	Very Poor
Overall Index	1.57
Total Taxa Score	1
EPT Taxa Score	3
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	1
Ephemeroptera % Score	1
Scraper Taxa Score	1
% Climbers	3
Calculated Metric Values	
Total Taxa	13
EPT Taxa	3
Ephemeroptera Taxa	0
Intolerant Urban %	3.6
Ephemeroptera %	0
Scraper Taxa	0
% Climbers	0.9
Taxa List	
Paranemoura	1
Tanytarsus	1
Stegopterna	1
Smittia	2
Rheocricotopus	8
Orthocladius/Cricotopus	2
Ironoquia	6
Diplocladius	3
Chaetocladius	72
	3
Enchytraeidae	
Enchytraeidae Limnephilidae	8

<u>Physical Habitat</u>
EPA Rapid Bioassessment
Bank Stability- Left Bank

Bank Stability- Left Bank	6	Pool Variability
Bank Stability- Right Bank	7	Riparian Vegetative Zone Width- Left Bank
Channel Alteration	19	Riparian Vegetative Zone Width- Right Bank
Channel Flow Status	18	Sediment Deposition
Channel Sinuosity	3	Vegetative Protection (Left Bank)
Epifaunal Substrate/Available Cover	9	Vegetative Protection (Right Bank)
Pool Substrate Characterization	8	
		EPA Habitat Score

Maryland Biological Stream Survey PHI

Drainage area (acres)	175.7	Instream Wood Debris	4
Remoteness	5	Bank Stability	13
Shading	100		
Epifaunal Substrate	6	PHI Score	69.62
Instream Habitat	9	PHI Narrative Ranking	PD
Water Chemistry			
Dissolved Oxygen (mg/L)	12.27	Specific Conductance (μ S/cm)	138
pH	6.29	Temperature (°C)	3.61

Geomorphic Assessments

Rosgen Level II Classification Data

Kosgen Level II Classification Data				
Drainage Area (mi ²)	0.28	Cross Sectional Area (ft ²)	6.6	
Bankfull Width (ft)	8.2	Water Surface Slope (%)	0.276	
Mean Bankfull Depth (ft)	0.8	Sinuosity	1.0*	
Floodprone Width (ft)	13.8	D50 (mm)	0.25*	
Entrenchment Ratio	1.7	Adjustments?	†Sin, †W/D	
Width to Depth Ratio	10.1	Rosgen Stream Type	B5c	
*=Estimated				
0		14-03, Glide		
-1 -2 -3 -3 -5 -4 -7 -8 -9	15	20 25 30 35	40 •	

Width

Total Individuals

West River Sampling Unit

Location/Site Access: Located at Powerline R.O.W on Sudley Ave. - 0.35 miles southeast Latitude/Longitude: 38.84791/-76.58669

Land Use Analysis:

Land Use	Acres	% Area
Open Space	8.6	6.2
Pasture/Hay	12.2	8.7
Residential 1/2-		
acre	5.2	3.7
Residential 1-		
acre	1.2	0.8
Residential 2-		
acre	26.6	19.0
Row Crops	7.5	5.4
Transportation	4.5	3.2
Utility	6.4	4.6
Woods	67.7	48.4
Grand Total	140.0	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
6.3	140.0	4.5

Results:

- Biological condition "Very Poor"
- Habitat scores "Supporting" and "Minimally Degraded"
- Biological community is in worse condition than would be expected for available habitat quality.
- Habitat ratings related to the banks and riparian zone are optimal. Pool and substrate measures are not.
- Sample dominated by midges (*Diplocladius* and *Chaetocladius*)
- Stream type was identified as an B5c, slope was 0.428 percent, and the median channel substrate was estimated as fine or medium sand
- This channel appears to have stable banks and somewhat stable streambed. Pools and channel sinuosity are marginal.

- Maintain protection of the riparian area.
- Plan for hydrologic stability with potential increases in imperviousness.
- Determine if water quality impacts are occurring due to developed, agricultural lands upstream and remedy as needed or feasible with BMPs.

West River Sampling Unit

Narrative Rating	Very Poor
Overall Index	1.86
Total Taxa Score	3
EPT Taxa Score	3
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	3
Ephemeroptera % Score	1
Scraper Taxa Score	1
% Climbers	1
Calculated Metric Values	
Total Taxa	16
EPT Taxa	2
Ephemeroptera Taxa	0
Intolerant Urban %	13.76
Ephemeroptera %	0
Scraper Taxa	0
% Climbers	0
Taxa List Orthocladius/Cricotopus Tubificinae Tipula Stegopterna Pisidiidae Rheocricotopus Prosimulium Diplocladius Pseudorthocladius Chaetocladius Limnephilidae Limnodrilus Limnophyes Nemouridae Orthocladius	5 1 1 2 4 12 40 2 33 1 3 1 1 1 1

Physical Habitat EPA Rapid Bioassessment Bank Stability- Left Bank Bank Stability- Right Bank

Bank Subinty Right Bank	7
Channel Alteration	20
Channel Flow Status	17
Channel Sinuosity	6
Epifaunal Substrate/Available Cover	12
Pool Substrate Characterization	10

8	Pool Variability	5
	Riparian Vegetative	
7	Zone Width- Left Bank	10
	Riparian Vegetative	
20	Zone Width- Right Bank	10
17	Sediment Deposition	9
6	Vegetative Protection (Left Bank)	8
12	Vegetative Protection (Right Bank)	7
10		

EPA Habitat Score	129
EPA Narrative Ranking	S

Maryland Biological Stream Survey PHI

Drainage area (acres)	140.0	Instream Wood Debris	10
Remoteness	13	Bank Stability	15
Shading	95		
Epifaunal Substrate	3	PHI Score	81.67
Instream Habitat	12	PHI Narrative Ranking	MD
Water Chemistry			
Dissolved Oxygen (mg/L)	13.81	Specific Conductance (µS/cm)	199
pH	6.64	Temperature (°C)	7.85

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi ²) Bankfull Width (ft) Mean Bankfull Depth (ft) Floodprone Width (ft) Entrenchment Ratio Width to Depth Ratio	0.219 6.0 0.7 10.4 1.7 8.6	Cross Sectional Area (ft ²) Water Surface Slope (%) Sinuosity D50 (mm) Adjustments? Rosgen Stream Type	4.2 0.428 1.0* 0.25* ↑Sin, ↑W/D B5c
*=Estimated			
0 -2 0 5 10	15	14-06, Glide 20 25 30 35	40
-4 -5 -6 -10 -12			\$
		Width	

Total Individuals

West River Sampling Unit

Location/Site Access: Located at Bollesy Lane, crossing, ~ 140m. Upstream Latitude/Longitude: 38.8588/-76.57385

Land Use Analysis:

Land Use	Acres	% Area
Open Space	11.8	4.9
Pasture/Hay	3.7	1.5
Residential 1-		
acre	4.4	1.8
Residential 2-		
acre	72.3	29.9
Row Crops	53.0	21.9
Transportation	3.1	1.3
Utility	10.6	4.4
Water	0.1	0.1
Woods	82.8	34.2
Grand Total	242.0	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
13.0	242.0	5.4

Results:

- Biological condition "Very Poor"
- Habitat scores "Partially Supporting" and "Partially Degraded"
- Biological community is in worse condition than would be expected for available habitat quality.
- Riparian features are largely intact, but pool features are marginal at best
- Sample dominated by midges (*Hydrobaenus*) and blackflies (*Prosimulium*)
- Stream type was identified as an E5, slope was 0.47 percent, and the median channel substrate was fine sand
- Typically, E channels are stable. However, this channel has suboptimal bank and substrate features, and may be unstable

- Maintain protection of the riparian area.
- Plan for hydrologic stability with potential increases in imperviousness.
- Evaluate possible water quality impacts from existing agricultural, developed lands in basin and treat as necessary and feasible with appropriate management techniques.

West River Sampling Unit

IBI and Metric Scores	
Narrative Rating	Very Poor
Overall Index	1.86
Total Taxa Score	3
EPT Taxa Score	3
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	3
Ephemeroptera % Score	1
Scraper Taxa Score	1
% Climbers	1
Calculated Metric Values	
Total Taxa	17
EPT Taxa	3
Ephemeroptera Taxa	0
Intolerant Urban %	17.24
Ephemeroptera %	0
Scraper Taxa	0
% Climbers	0
Taxa List	
Enchytraeidae	1
Orthocladiinae	1
Culiseta	3
Stegopterna	6
Rheocricotopus	1
Pseudorthocladius	1

Physical Habitat EPA Rapid Bioassessment Bank Stability- Left Bank Bank Stability- Right Bank

Channel Alteration	2
Channel Flow Status	1
Channel Sinuosity	,
Epifaunal Substrate/Available Cover	12
Pool Substrate Characterization	,

6	Pool Variability	4
	Riparian Vegetative	
5	Zone Width- Left Bank	10
	Riparian Vegetative	
20	Zone Width- Right Bank	10
17	Sediment Deposition	11
7	Vegetative Protection (Left Bank)	6
12	Vegetative Protection (Right Bank)	5
7		

EPA Habitat Score	120
EPA Narrative Ranking	PS

Maryland Biological Stream Survey PHI

Drainage area (acres)	242.0	Instream Wood Debris	9
Remoteness	6	Bank Stability	11
Shading	100		
Epifaunal Substrate	4	PHI Score	71.24
Instream Habitat	12	PHI Narrative Ranking	PD
Water Chemistry			
Dissolved Oxygen (mg/L)	11.7	Specific Conductance (μ S/cm)	197
pH	6.03	Temperature (°C)	5.03

Geomorphic Assessments

Rosgen Level II Classification Data

0.
12
1
14
11
7

7.3	Rosgen Stream Type	E5
11.9*	Adjustments?	↑Sin
143*	D50 (mm)	0.19
1.6	Sinuosity	1.1
12.0	Water Surface Slope (%)	0.47
0.38	Cross Sectional Area (ft ²)	19.6

*=Estimated

Total Individuals

Prosimulium

Chaetocladius

Culicidae

Brachycera Nemouridae

Diplocladius

Hydrobaenus

Erioptera

Ironoquia Limnephilidae

Orthocladius/Cricotopus

13

6

4 1

5

1

3

5 53

5 7

West River Sampling Unit

Location/Site Access: Located at 5207 Sudley Road, West 0.25 miles Latitude/Longitude: 38.82271/-76.57481

Land Use Analysis:

Land Use	Acres	% Area
Open Space	4.9	6.2
Residential 2-		
acre	12.2	15.3
Row Crops	4.3	5.4
Transportation	1.1	1.4
Woods	57.4	71.8
Grand Total	79.9	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
1.9	79.9	2.4

Results:

- Biological condition "Poor"
- Habitat scores "Partially Supporting" and "Partially Degraded"
- Biological community observed is trending toward more than expected impairment based on the observed habitat quality.
- Most habitat features are intact, but pool and substrate features are marginal at best. This site has one of the worst ratings for channel flow status of all sites sampled in 2008.
- Sample evenly dominated by midges (*Smittia* and *Diplocladius*), stoneflies (*Nemouridae*) and amphipods (*Caecidotea*)
- Stream type was identified as an E5, slope was 1.6 percent, and the median channel substrate was estimated as fine or medium sand
- This channel appears to be stable, perhaps due to the small catchment and low % imperviousness. **Recommendations:**
- Maintain protection of the riparian area.
- Plan for hydrologic stability with potential increases in imperviousness.
- Ascertain that this is a truly perennial stream before applying index ratings

West River Sampling Unit

IBI and Metric Scores	
Narrative Rating	Poor
Overall Index	2.43
Total Taxa Score	3
EPT Taxa Score	3
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	5
Ephemeroptera % Score	1
Scraper Taxa Score	1
% Climbers	3
Calculated Metric Values	
Total Taxa	17
EPT Taxa	3
Ephemeroptera Taxa	0
Intolerant Urban %	40
Ephemeroptera %	0
Scraper Taxa	0
% Climbers	1
Taxa List	
Rheocricotopus	1
Stygobromus	1
Zalutschia	3
Tvetenia	1

Physical Habitat EPA Rapid Bioassessment Bank Stability- Left Bank Bank Stability- Right Bank Channel Alteration

Channel Alteration	20
Channel Flow Status	8
Channel Sinuosity	5
Epifaunal Substrate/Available Cover	4
Pool Substrate Characterization	8

	EPA Habitat Score	122
8		
4	Vegetative Protection (Right Bank)	10
5	Vegetative Protection (Left Bank)	10
8	Sediment Deposition	14
20	Zone Width- Right Bank	10
9	Zone Width- Left Bank	10
	Riparian Vegetative	
9	Pool Variability	5

PS

3.6

1.6

1.0*

0.25*

↑Sin E5

EPA Narrative Ranking

Maryland Biological Stream Survey PHI

Drainage area (acres)	79.9	Instream Wood Debris	12
Remoteness	14	Bank Stability	18
Shading	100		
Epifaunal Substrate	2	PHI Score	77.933
Instream Habitat	4	PHI Narrative Ranking	PD
Water Chemistry			
Dissolved Oxygen (mg/L)	9.15	Specific Conductance (μ S/cm)	111
pH	5.71	Temperature (°C)	8.55

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi ²)	0.125	Cross Sectional Area (ft ²)
Bankfull Width (ft)	5.6	Water Surface Slope (%)
Mean Bankfull Depth (ft)	0.6	Sinuosity
Floodprone Width (ft)	155	D50 (mm)
Entrenchment Ratio	27.8	Adjustments?
Width to Depth Ratio	8.7	Rosgen Stream Type

Total Individuals

Synurella

Smittia

Stegopterna

Hydrobaenus

Oligostomis

Neoporus

Caecidotea

Limnephilidae

Enchytraeidae Diplocladius

Chaetocladius

Orthocladius/Cricotopus

Nemouridae

4

1

18

2

1

1

16

3

7

18

4

18

1

West River Sampling Unit

Location/Site Access: Located at Route 255 Pull-off Latitude/Longitude: 38.84992/-76.5629

Land Use Analysis:

Land Use	Acres	% Area
Commercial	3.9	0.3
Open Space	56.3	4.1
Pasture/Hay	148.7	10.7
Residential 1/2-		
acre	5.2	0.4
Residential 1-		
acre	37.0	2.7
Residential 2-		
acre	149.2	10.7
Row Crops	219.9	15.8
Transportation	23.6	1.7
Utility	40.7	2.9
Water	0.5	0.0
Woods	704.9	50.7
Grand Total	1389.9	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
38.6	1389.9	2.8

Results:

- Biological condition "Very Poor"
- Habitat scores "Partially Supporting" and "Degraded"
- Biological community is in worse condition than would be expected for available habitat quality.
- Riparian areas are highly disturbed. Most other habitat features are suboptimal or worse.
- Sample dominated by blackflies (*Steegopterna*), midges (*Orthocladius/Cricotopus* and *Hydrobaenus*), and stoneflies (*Nemouridae*)
- Stream type was identified as an E5, slope was 0.322 percent, and the median channel substrate was estimated as fine or medium sand
- This channel is in reasonable condition for the degree of disturbance in the riparian area

- Protect the riparian area by establishing buffers.
- Plan for hydrologic stability with potential increases in imperviousness.
- Determine impact on water quality of existing agricultural, developed lands and correct as necessary and feasible with appropriate BMPs.

West River Sampling Unit

IBI and Metric Scores	
Narrative Rating	Very Poor
Overall Index	1.86
Total Taxa Score	1
EPT Taxa Score	1
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	5
Ephemeroptera % Score	1
Scraper Taxa Score	1
% Climbers	3
Calculated Metric Values	
Total Taxa	11
EPT Taxa	1
Ephemeroptera Taxa	0
Intolerant Urban %	68.32
Ephemeroptera %	0
Scraper Taxa	0
% Climbers	0.99
Tubificinae Tanytarsus Stegopterna Pisidiidae Orthocladius/Cricotopus Limnodrilus Hydrobaenus Diplocladius Ancyronyx Prosimulium	1 1 53 1 13 1 13 1 1 3

Physical Habitat EPA Rapid Bioassessment

		EPA Narrative Ranking	PS
		EPA Habitat Score	113
Pool Substrate Characterization	12		
Epifaunal Substrate/Available Cover	14	Vegetative Protection (Right Bank)	6
Channel Sinuosity	5	Vegetative Protection (Left Bank)	7
Channel Flow Status	16	Sediment Deposition	11
Channel Alteration	20	Riparian Vegetative Zone Width- Right Bank	1
Bank Stability- Right Bank	6	Riparian Vegetative Zone Width- Left Bank	0
Bank Stability- Left Bank	7	Pool Variability	8

Maryland Biological Stream Survey PHI

Drainage area (acres)	1389.9	Instream Wood Debris	12
Remoteness	11	Bank Stability	13
Shading	45		
Epifaunal Substrate	7	PHI Score	65.77
Instream Habitat	14	PHI Narrative Ranking	D
Water Chemistry			
Dissolved Oxygen (mg/L)	9.78	Specific Conductance (µS/cm)	155
pH	6.22	Temperature (°C)	7.67

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi ²)	2.2
Bankfull Width (ft)	12.5
Mean Bankfull Depth (ft)	1.3
Floodprone Width (ft)	100*
Entrenchment Ratio	8*
Width to Depth Ratio	9.9

	Shubbilication Data	
2	Cross Sectional Area (ft ²)	15.8
5	Water Surface Slope (%)	0.322
3	Sinuosity	1.0*
)*	D50 (mm)	0.25*
<	Adjustments?	↑Sin
)	Rosgen Stream Type	E5

*=Estimated

Total Individuals

14-12A

West River Sampling Unit

Location/Site Access: Located at Six- mile Horse farm Latitude/Longitude: 38.8519/-76.57355

Land Use Analysis:

Land Use	Acres	% Area
Commercial	2.2	0.3
Open Space	23.7	3.4
Pasture/Hay	84.4	12.2
Residential 1/2-		
acre	5.2	0.8
Residential 1-		
acre	7.1	1.0
Residential 2-		
acre	56.1	8.1
Row Crops	56.8	8.2
Transportation	11.6	1.7
Utility	30.1	4.3
Water	0.4	0.1
Woods	414.9	59.9
Grand Total	692.6	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
15.7	692.6	2.3

Results:

- Biological condition "Very Poor"
- Habitat scores "Partially Supporting" and "Partially Degraded"
- Biological community is in worse condition than would be expected for available habitat quality.
- Riparian features are largely intact, but pool and substrate features are marginal at best
- Sample dominated by midges (*Hydrobaenus*) and stoneflies (*Nemouridae*)
- Stream type was identified as an E5, slope was 0.058 percent, and the median channel substrate was estimated as fine or medium sand
- Typically, E channels are stable. However, this channel has suboptimal bank and substrate features, and may be unstable

- Maintain protection of the riparian area.
- Plan for hydrologic stability with potential increases in imperviousness.
- Determine if upstream agricultural, developed lands are adversely impacting water quality and, if so, correct with appropriate BMPs as feasible.

14-12A

West River Sampling Unit

Pool Variability

EPA Narrative Ranking

5

10

10

10

5

6

118

PS

13.7

0.058

1.2

0.25*

↑Sin

E5

IBI and Metric Scores	
Narrative Rating	Very Poor
Overall Index	1.57
Total Taxa Score	1
EPT Taxa Score	3
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	3
Ephemeroptera % Score	1
Scraper Taxa Score	1
% Climbers	1
Calculated Metric Values	
Total Taxa	13
EPT Taxa	3
Ephemeroptera Taxa	0
Intolerant Urban %	13.46
Ephemeroptera %	0
Scraper Taxa	0
% Climbers	0
Caecidotea Smittia Sciaridae Orthocladius/Cricotopus Orthocladiinae Limnephilidae Ironoquia Hydrobaenus Diplocladius Crangonyx Enchytraeidae Chaetocladius	1 1 1 1 1 1 2 2 5 60 4 1 1 2

Total Individuals

Physical Habitat EPA Rapid Bioassessment Bank Stability- Left Bank

Bank Stability- Right Bank	6	Riparian Vegetative Zone Width- Left Bank
Channel Alteration	20	Riparian Vegetative Zone Width- Right Bank
Channel Flow Status	15	Sediment Deposition
Channel Sinuosity	8	Vegetative Protection (Left Bank)
Epifaunal Substrate/Available Cover	10	Vegetative Protection (Right Bank)
Pool Substrate Characterization	8	
		EPA Habitat Score

5

Maryland Biological Stream Survey PHI

Drainage area (acres)	692.6	Instream Wood Debris	10
Remoteness	9	Bank Stability	11
Shading	100		
Epifaunal Substrate	3	PHI Score	66.69
Instream Habitat	10	PHI Narrative Ranking	PD
Water Chemistry			
Dissolved Oxygen (mg/L)	9.44	Specific Conductance (µS/cm)	152
рН	5.98	Temperature (°C)	9.61

Geomorphic Assessments

104

Rosgen Level II Classification Data

Drainage Area (mi ²)	1.08	Cross Sectional Area (ft ²)
Bankfull Width (ft)	11.1	Water Surface Slope (%)
Mean Bankfull Depth (ft)	1.2	Sinuosity
Floodprone Width (ft)	156*	D50 (mm)
Entrenchment Ratio	14.1*	Adjustments?
Width to Depth Ratio	9.0	Rosgen Stream Type
*=Estimated		

14-14A

West River Sampling Unit

Location/Site Access: MISSING INFORMATION Latitude/Longitude: 38.83887/-76.5676

Land Use Analysis:

Land Use	Acres	% Area
Commercial	1.3	0.2
Open Space	5.8	1.0
Pasture/Hay	4.7	0.8
Residential 1-		
acre	1.9	0.3
Residential 2-		
acre	31.9	5.6
Row Crops	57.7	10.1
Transportation	4.5	0.8
Woods	463.9	81.1
Grand Total	571.8	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
5.9	571.8	1.0

Results:

- Biological condition "Poor"
- Habitat scores "Partially Supporting" and "Partially Degraded"
- Biological community observed is trending toward more than expected impairment based on the observed habitat quality.
- Riparian features are intact, but bank, substrate, and pool features are marginal
- Sample dominated by midges (*Hydrobaenus*), stoneflies (*Nemouridae*), and worms (*Enchytraeidae*)
- Stream type was identified as an G5c, slope was 1.04 percent, and the median channel substrate was estimated as fine or medium sand
- Typically, G channels are not stable. This channel has marginal bank and substrate features, and may be unstable

- Maintain protection of the riparian area.
- Plan for hydrologic stability with potential increases in imperviousness.
- Investigate cause of poor biological condition and partial degradation of habitat features despite predominantly natural land uses

14-14A

West River Sampling Unit

Narrative Rating Overall Index Total Taxa Score EPT Taxa Score Ephemeroptera Taxa Score Ephemeroptera % Score Ephemeroptera % Score Scraper Taxa Score % Climbers Calculated Metric Values Total Taxa EPT Taxa Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Amphinemura Tubificinae Nemouridae	Poor 2.14 3 3 1 5 1 1 1 1 1 1 1 7 3 0 41.58 0 0 0 0 0
Overall Index Total Taxa Score EPT Taxa Score Ephemeroptera Taxa Score Intolerant Urban % Score Ephemeroptera % Score Scraper Taxa Score % Climbers Calculated Metric Values Total Taxa EPT Taxa Ephemeroptera Taxa Intolerant Urban % Ephemeroptera Taxa Scraper Taxa Scraper Taxa Phemeroptera % Scraper Taxa Molerant Urban % Ephemeroptera % Scraper Taxa % Climbers	2.14 3 3 1 5 1 1 1 17 3 0 41.58 0 0 0 0
Total Taxa Score EPT Taxa Score Ephemeroptera Taxa Score Intolerant Urban % Score Ephemeroptera % Score Scraper Taxa Score % Climbers Calculated Metric Values Total Taxa EPT Taxa Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Amphinemura Tubificinae Nemouridae	3 3 1 5 1 1 1 1 1 7 3 0 41.58 0 0 0 0
EPT Taxa Score Ephemeroptera Taxa Score Intolerant Urban % Score Ephemeroptera % Score Scraper Taxa Score % Climbers Calculated Metric Values Total Taxa EPT Taxa Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Amphinemura Tubificinae Nemouridae	3 1 5 1 1 1 1 7 3 0 41.58 0 0 0 0
Ephemeroptera Taxa Score Intolerant Urban % Score Ephemeroptera % Score Scraper Taxa Score % Climbers Calculated Metric Values Total Taxa EPT Taxa Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Amphinemura Tubificinae Nemouridae	1 5 1 1 1 1 7 3 0 41.58 0 0 0 0
Intolerant Urban % Score Ephemeroptera % Score Scraper Taxa Score <u>% Climbers</u> Calculated Metric Values Total Taxa EPT Taxa Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa <u>% Climbers</u> Taxa List Amphinemura Tubificinae Nemouridae	5 1 1 17 3 0 41.58 0 0 0 0
Ephemeroptera % Score Scraper Taxa Score % Climbers Calculated Metric Values Total Taxa EPT Taxa Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Amphinemura Tubificinae Nemouridae	1 1 17 3 0 41.58 0 0 0 0
Scraper Taxa Score % Climbers Calculated Metric Values Total Taxa EPT Taxa Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Amphinemura Tubificinae Nemouridae	1 17 3 0 41.58 0 0 0 0
% Climbers Calculated Metric Values Total Taxa EPT Taxa Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Amphinemura Tubificinae Nemouridae	1 17 3 0 41.58 0 0 0
Calculated Metric Values Total Taxa EPT Taxa Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Amphinemura Tubificinae Nemouridae	17 3 0 41.58 0 0 0
Total Taxa EPT Taxa Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Amphinemura Tubificinae Nemouridae	17 3 0 41.58 0 0 0
EPT Taxa Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Amphinemura Tubificinae Nemouridae	3 0 41.58 0 0 0
Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Amphinemura Tubificinae Nemouridae	0 41.58 0 0 0
Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Amphinemura Tubificinae Nemouridae	41.58 0 0 0
Ephemeroptera % Scraper Taxa % Climbers Taxa List Amphinemura Tubificinae Nemouridae	0 0 0
Scraper Taxa % Climbers Taxa List Amphinemura Tubificinae Nemouridae	0
% Climbers Taxa List Amphinemura Tubificinae Nemouridae	0
Taxa List Amphinemura Tubificinae Nemouridae	0
Synurella Stegopterna Pisidiidae Rheocricotopus Orthocladius/Cricotopus Caecidotea Nais Chaetocladius Diplocladius Hydrobaenus Ironoquia Limnodrilus Limnophyes Enchytraeidae	4 1 21 7 8 1 1 5 2 1 2 6 3 3 1 14

Physical Habitat			
EPA Rapid Bioassessment			
Bank Stability- Left Bank	5	Pool Variability	7
Bank Stability- Right Bank	4	Riparian Vegetative Zone Width- Left Bank	10
Channel Alteration	20	Riparian Vegetative Zone Width- Right Bank	10
Channel Flow Status	16	Sediment Deposition	9
Channel Sinuosity	10	Vegetative Protection (Left Bank)	5
Epifaunal Substrate/Available Cover	8	Vegetative Protection (Right Bank)	4
Pool Substrate Characterization	8		
		EPA Habitat Score	116
		EPA Narrative Ranking	PS
Maryland Biological Stream	Survey 1	PHI	
Drainage area (acres)	571.8	Instream Wood Debris	10
Remoteness	14	Bank Stability	9
Shading	100		
Epifaunal Substrate	5	PHI Score	70.98
Instream Habitat	8	PHI Narrative Ranking	PD
Water Chemistry			
Dissolved Oxygen (mg/L)	9.31	Specific Conductance (µS/cm)	56
pH	6.16	Temperature (°C)	10.12

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi ²)	0.89
Bankfull Width (ft)	8.6
Mean Bankfull Depth (ft)	1.2
Floodprone Width (ft)	10.1
Entrenchment Ratio	1.2
Width to Depth Ratio	7.2

*=Estimated

Total Individuals

101

14-16A

West River Sampling Unit

Location/Site Access: Located at Charles Gift Court Crossing Latitude/Longitude: 38.86008/-76.5761

Land Use Analysis:

Land Use	Acres	% Area
Open Space	11.8	6.5
Pasture/Hay	3.5	1.9
Residential 1-		
acre	4.4	2.4
Residential 2-		
acre	29.1	16.0
Row Crops	53.2	29.2
Transportation	2.1	1.1
Utility	10.6	5.8
Water	0.1	0.1
Woods	67.1	36.9
Grand Total	182.0	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
5.6	182.0	3.1

Results:

- Biological condition "Very Poor"
- Habitat scores "Partially Supporting" and "Partially Degraded"
- Biological community is in worse condition than would be expected for available habitat quality.
- Bank and riparian conditions are sub-optimal, and substrate conditions are marginal
- Sample dominated by midges (*Chaetocladius*) and caddisflies (*Ironoquia*)
- Channel morphology was not assessed, because the nearby culvert may alter natural channel evolution

- Maintain protection of the riparian area.
- Plan for hydrologic stability with potential increases in imperviousness.
- Investigate very poor biological conditions and partially degraded habitat conditions despite low imperviousness in the catchment.
- Determine if water quality impairments are due to agricultural activities in this basin and correct with appropriate BMPs as necessary and feasible.

14-16A

West River Sampling Unit

IBI and Metric Scores	
Narrative Rating	Very Poor
Overall Index	1.57
Total Taxa Score	3
EPT Taxa Score	3
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	1
Ephemeroptera % Score	1
Scraper Taxa Score	1
% Climbers	1
Calculated Metric Values	
Total Taxa	15
EPT Taxa	3
Ephemeroptera Taxa	0
Intolerant Urban %	9.52
Ephemeroptera %	0
Scraper Taxa	0
% Climbers	0
Taxa List Gonomyia Nemoura Tubificinae Stegopterna Pisidiidae Simuliidae Rheocricotopus Ironoquia Diplocladius Chaetocladius Enchytraeidae Caecidotea Amphinemura Aedes Limnodrilus	1 4 2 8 1 9 10 2 56 2 1 3 1 1
Total Individuals	105

Physical Habitat			
EPA Rapid Bioassessment			
Bank Stability- Left Bank	8	Pool Variability	6
Bank Stability- Right Bank	7	Riparian Vegetative Zone Width- Left Bank	6
Channel Alteration	11	Riparian Vegetative Zone Width- Right Bank	6
Channel Flow Status	14	Sediment Deposition	9
Channel Sinuosity	6	Vegetative Protection (Left Bank)	8
Epifaunal Substrate/Available Cover	7	Vegetative Protection (Right Bank)	7
Pool Substrate Characterization	6		
		EPA Habitat Score	101
		EPA Narrative Ranking	PS
Maryland Biological Stream	Survey	PHI	
Drainage area (acres)	182.0	Instream Wood Debris	6
Remoteness	6	Bank Stability	15
Shading	90		
Epifaunal Substrate	3	PHI Score	66.14

Water Chemistry

Dissolved Oxygen (mg/L)	11.26	Specific Conductance (µS/cm)	199
рH	6.48	Temperature (°C)	10.76

7

PHI Narrative Ranking

PD

Geomorphic Assessments

Instream Habitat

Rosgen Level II Classification Data

Drainage Area (mi ²)	Cross Sectional Area (ft ²)
Bankfull Width (ft)	Water Surface Slope (%)
Mean Bankfull Depth (ft)	Sinuosity
Floodprone Width (ft)	D50 (mm)
Entrenchment Ratio	Adjustments?
Width to Depth Ratio	Rosgen Stream Type

*=Estimated

No assessment due to culvert present in reach.

This page intentionally left blank.

Rock Branch Sampling Unit

Location/Site Access: Located at MISSING INFORMATION Latitude/Longitude: 38.85168/-76.64574

Land Use Analysis:

Land Use	Acres	% Area
Commercial	14.9	0.7
Open Space	105.6	5.3
Pasture/Hay	195.3	9.8
Residential 1/2-		
acre	16.5	0.8
Residential 1-		
acre	70.5	3.5
Residential 2-		
acre	261.3	13.1
Row Crops	353.4	17.7
Transportation	29.2	1.5
Water	1.5	0.1
Woods	951.6	47.6
Grand Total	1999.8	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
79.0	1999.8	4.0

Results:

- Biological condition "Very Poor"
- Habitat scores "Partially Supporting" and "Partially Degraded"
- Biological community is in worse condition than would be expected for available habitat quality.
- Riparian features are intact, but bank, substrate, and pool features are marginal
- Sample heavily dominated by blackflies (*Prosimulium*) and by midges (*Diplocladius*)
- Stream type was identified as an G5c, slope was 0.415 percent, and the median channel substrate was fine sand
- Typically, G channels are unstable. This channel has marginal bank and substrate features, and may be unstable.

- Maintain protection of the riparian area.
- Plan for hydrologic stability with potential increases in imperviousness.
- Investigate very poor biological condition and partially degraded habitat conditions despite predominantly natural land uses
- Investigate need, feasibility of BMP retrofits on agricultural, developed lands upstream of site.

Rock Branch Sampling Unit

Narrative RatingVery PoorOverall Index1.86Total Taxa Score1EPT Taxa Score3Ephemeroptera Taxa Score1Intolerant Urban % Score5Ephemeroptera % Score1Scraper Taxa Score1% Climbers1Calculated Metric Values1Total Taxa12EPT Taxa3Ephemeroptera %0Intolerant Urban %71.57Ephemeroptera Taxa0Intolerant Urban %71.57Ephemeroptera %0Scraper Taxa0Noterature %0Scraper Taxa1Moriant Urban %1Scraper Taxa0% Climbers0Taxa List1Ironoquia1Amphinemura1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius1Hydrobaenus1Chaetocladius1	Narrative RatingVery PoorOverall Index1.86Total Taxa Score3EphT Taxa Score3Ephemeroptera Taxa Score1Intolerant Urban % Score1Scraper Taxa Score1% Climbers1Calculated Metric Values1Ephemeroptera Taxa0Intolerant Urban %71.57Ephemeroptera Taxa0Intolerant Urban %71.57Ephemeroptera %0Scraper Taxa0Molerant Urban %71.57Ephemeroptera %0Scraper Taxa0% Climbers0Scraper Taxa0% Climbers1Tonoquia1Amphinemura1Simulidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius1Hydrobaenus1Hydrobaenus1Chaetocladius1	IBI and Metric Scores	
Overall Index1.86Total Taxa Score1EPT Taxa Score3Ephemeroptera Taxa Score1Intolerant Urban % Score5Ephemeroptera % Score1Scraper Taxa Score1% Climbers1Calculated Metric ValuesTotal Taxa12EPT Taxa3Ephemeroptera Taxa0Intolerant Urban %71.57Ephemeroptera Taxa0Intolerant Urban %71.57Ephemeroptera %0Scraper Taxa0% Climbers0Scraper Taxa1Intolerant Urban %71.57Ephemeroptera %0Scraper Taxa1Intolicitat Urban %71.57Ephemeroptera %0Scraper Taxa1Yorinoquia1Amphinemura1Tubificinae1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius12Enchytraeidae2Allocapnia1Hydrobaenus1Chaetocladius1	Overall Index1.86Total Taxa Score1EPT Taxa Score3Ephemeroptera Taxa Score1Intolerant Urban % Score5Ephemeroptera % Score1% Climbers1% Climbers1Total Taxa12EPT Taxa3Ephemeroptera Taxa0Intolerant Urban %71.57Ephemeroptera Taxa0Intolerant Urban %71.57Ephemeroptera %0Scraper Taxa0Mclimbers0Scraper Taxa0% Climbers0Scraper Taxa0% Climbers0Scraper Taxa1Ironoquia1Amphinemura1Tubificinae1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius1Hydrobaenus1Chaetocladius1	Narrative Rating	Very Poor
Total Taxa Score1EPT Taxa Score3Ephemeroptera Taxa Score1Intolerant Urban % Score5Ephemeroptera % Score1Scraper Taxa Score1% Climbers1Calculated Metric ValuesTotal Taxa12EPT Taxa3Ephemeroptera Taxa0Intolerant Urban %71.57Ephemeroptera %0Scraper Taxa0Molerant Urban %71.57Ephemeroptera %0Scraper Taxa0% Climbers0Taxa List1Ironoquia1Amphinemura1Tubificinae1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius1Hydrobaenus1Chaetocladius1	Total Taxa Score1EPT Taxa Score3Ephemeroptera Taxa Score1Intolerant Urban % Score5Ephemeroptera % Score1Scraper Taxa Score1% Climbers1Calculated Metric ValuesTotal Taxa12EPT Taxa3Ephemeroptera Taxa0Intolerant Urban %71.57Ephemeroptera Taxa0Scraper Taxa0% Climbers0Scraper Taxa0% Climbers0Scraper Taxa1Nonoquia1Amphinemura1Tubificinae1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius1Hydrobaenus1Chaetocladius1	Overall Index	1.86
EPT Taxa Score3Ephemeroptera Taxa Score1Intolerant Urban % Score5Ephemeroptera % Score1Scraper Taxa Score1% Climbers1Calculated Metric ValuesTotal Taxa12EPT Taxa3Ephemeroptera Taxa0Intolerant Urban %71.57Ephemeroptera Taxa0Scraper Taxa0Scraper Taxa0% Climbers0Scraper Taxa0% Climbers0Taxa List1Ironoquia1Amphinemura1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius12Enchytraeidae2Allocapnia1Hydrobaenus1Chaetocladius1	EPT Taxa Score3Ephemeroptera Taxa Score1Intolerant Urban % Score5Ephemeroptera % Score1Scraper Taxa Score1% Climbers1Calculated Metric ValuesTotal Taxa12EPT Taxa3Ephemeroptera Taxa0Intolerant Urban %71.57Ephemeroptera %0Scraper Taxa0% Climbers0Scraper Taxa0% Climbers0Scraper Taxa1Inolerant Urban %71.57Ephemeroptera %0% Climbers0% Climbers0Taxa List1Ironoquia1Amphinemura1Tubificinae1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius1Hydrobaenus1Chaetocladius1	Total Taxa Score	1
Ephemeroptera Taxa Score1Intolerant Urban % Score5Ephemeroptera % Score1Scraper Taxa Score1% Climbers1Calculated Metric ValuesTotal Taxa12EPT Taxa3Ephemeroptera Taxa0Intolerant Urban %71.57Ephemeroptera %0Scraper Taxa0% Climbers0Scraper Taxa0% Climbers0Taxa List1Ironoquia1Amphinemura1Tubificinae1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius12Enchytraeidae2Allocapnia1Hydrobaenus1Chaetocladius1	Ephemeroptera Taxa Score1Intolerant Urban % Score5Ephemeroptera % Score1Scraper Taxa Score1% Climbers1Calculated Metric ValuesTotal Taxa12EPT Taxa3Ephemeroptera Taxa0Intolerant Urban %71.57Ephemeroptera %0Scraper Taxa0% Climbers0Scraper Taxa0% Climbers0Scraper Taxa0% Climbers0Taxa List1Ironoquia1Amphinemura1Tubificinae1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius12Enchytraeidae2Allocapnia1Hydrobaenus1Chaetocladius1	EPT Taxa Score	3
Intolerant Urban % Score5Ephemeroptera % Score1Scraper Taxa Score1% Climbers1Calculated Metric ValuesTotal Taxa12EPT Taxa3Ephemeroptera Taxa0Intolerant Urban %71.57Ephemeroptera %0Scraper Taxa0% Climbers0Scraper Taxa0% Climbers0Taxa List1Ironoquia1Amphinemura1Tubificinae1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius12Enchytraeidae2Allocapnia1Hydrobaenus1Chaetocladius1	Intolerant Urban % Score5Ephemeroptera % Score1Scraper Taxa Score1% Climbers1Calculated Metric ValuesTotal Taxa12EPT Taxa3Ephemeroptera Taxa0Intolerant Urban %71.57Ephemeroptera %0Scraper Taxa0% Climbers0% Climbers0Total Taxa1Ironoquia1Amphinemura1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius1Hydrobaenus1Chaetocladius1	Ephemeroptera Taxa Score	1
Ephemeroptera % Score1Scraper Taxa Score1% Climbers1Calculated Metric ValuesTotal Taxa12EPT Taxa3Ephemeroptera Taxa0Intolerant Urban %71.57Ephemeroptera %0Scraper Taxa0% Climbers0% Climbers0Taxa List1Ironoquia1Amphinemura1Tubificinae1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius12Enchytraeidae2Allocapnia1Hydrobaenus1Chaetocladius1	Ephemeroptera % Score1Scraper Taxa Score1% Climbers1Calculated Metric ValuesTotal Taxa12EPT Taxa3Ephemeroptera Taxa0Intolerant Urban %71.57Ephemeroptera %0Scraper Taxa0% Climbers0% Climbers0Taxa List1Ironoquia1Amphinemura1Tubificinae1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius1Hydrobaenus1Chaetocladius1	Intolerant Urban % Score	5
Scraper Taxa Score1% Climbers1Calculated Metric ValuesTotal Taxa12EPT Taxa3Ephemeroptera Taxa0Intolerant Urban %71.57Ephemeroptera %0Scraper Taxa0% Climbers0Market Metric Mathematication1Tonoquia1Amphinemura1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius12Enchytraeidae2Allocapnia1Hydrobaenus1	Scraper Taxa Score1% Climbers1Calculated Metric ValuesTotal Taxa12EPT Taxa3Ephemeroptera Taxa0Intolerant Urban %71.57Ephemeroptera %0Scraper Taxa0% Climbers0Taxa ListIronoquia1Amphinemura1Tubificinae1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius1Hydrobaenus1Chaetocladius1	Ephemeroptera % Score	1
% Climbers1Calculated Metric ValuesTotal Taxa12EPT Taxa3Ephemeroptera Taxa0Intolerant Urban %71.57Ephemeroptera %0Scraper Taxa0% Climbers0Taxa ListIronoquia1Amphinemura1Tubificinae1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius12Enchytraeidae2Allocapnia1Hydrobaenus1Chaetocladius1	% Climbers1Calculated Metric ValuesTotal Taxa12EPT Taxa3Ephemeroptera Taxa0Intolerant Urban %71.57Ephemeroptera %0Scraper Taxa0% Climbers0Taxa ListIronoquia1Amphinemura1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius12Enchytraeidae2Allocapnia1Hydrobaenus1Chaetocladius1	Scraper Taxa Score	1
Calculated Metric ValuesTotal Taxa12EPT Taxa3Ephemeroptera Taxa0Intolerant Urban %71.57Ephemeroptera %0Scraper Taxa0% Climbers0Taxa ListIronoquia1Amphinemura1Tubificinae1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius12Enchytraeidae2Allocapnia1Hydrobaenus1Chaetocladius1	Calculated Metric ValuesTotal Taxa12EPT Taxa3Ephemeroptera Taxa0Intolerant Urban %71.57Ephemeroptera %0Scraper Taxa0% Climbers0Taxa ListIronoquia1Amphinemura1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius12Enchytraeidae2Allocapnia1Hydrobaenus1Chaetocladius1	% Climbers	1
Total Taxa12EPT Taxa3Ephemeroptera Taxa0Intolerant Urban %71.57Ephemeroptera %0Scraper Taxa0% Climbers0Taxa ListIronoquia1Amphinemura1Tubificinae1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius12Enchytraeidae2Allocapnia1Hydrobaenus1Chaetocladius1	Total Taxa12EPT Taxa3Ephemeroptera Taxa0Intolerant Urban %71.57Ephemeroptera %0Scraper Taxa0% Climbers0Taxa ListIronoquia1Amphinemura1Tubificinae1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius12Enchytraeidae2Allocapnia1Hydrobaenus1Chaetocladius1	Calculated Metric Values	
EPT Taxa3Ephemeroptera Taxa0Intolerant Urban %71.57Ephemeroptera %0Scraper Taxa0% Climbers0Taxa ListIronoquia1Amphinemura1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius12Enchytraeidae2Allocapnia1Hydrobaenus1Chaetocladius1	EPT Taxa3Ephemeroptera Taxa0Intolerant Urban %71.57Ephemeroptera %0Scraper Taxa0% Climbers0Taxa ListIronoquia1Amphinemura1Tubificinae1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius12Enchytraeidae2Allocapnia1Hydrobaenus1Chaetocladius1	Total Taxa	12
Ephemeroptera Taxa0Intolerant Urban %71.57Ephemeroptera %0Scraper Taxa0% Climbers0Taxa ListIronoquia1Amphinemura1Tubificinae1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius12Enchytraeidae2Allocapnia1Hydrobaenus1Chaetocladius1	Ephemeroptera Taxa0Intolerant Urban %71.57Ephemeroptera %0Scraper Taxa0% Climbers0Taxa ListIronoquia1Amphinemura1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius12Enchytraeidae2Allocapnia1Hydrobaenus1Chaetocladius1	EPT Taxa	3
Intolerant Urban %71.57Ephemeroptera %0Scraper Taxa0% Climbers0Taxa List1Ironoquia1Amphinemura1Tubificinae1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius12Enchytraeidae2Allocapnia1Hydrobaenus1Chaetocladius1	Intolerant Urban %71.57Ephemeroptera %0Scraper Taxa0% Climbers0Taxa ListIronoquia1Amphinemura1Tubificinae1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius12Enchytraeidae2Allocapnia1Hydrobaenus1Chaetocladius1	Ephemeroptera Taxa	0
Ephemeroptera %0Scraper Taxa0% Climbers0Taxa ListIronoquia1Amphinemura1Tubificinae1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius12Enchytraeidae2Allocapnia1Hydrobaenus1Chaetocladius1	Ephemeroptera %0Scraper Taxa0% Climbers0Taxa ListIronoquiaIronoquia1Amphinemura1Tubificinae1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius12Enchytraeidae2Allocapnia1Hydrobaenus1Chaetocladius1	Intolerant Urban %	71.57
Scraper Taxa0% Climbers0Taxa ListIronoquia1Amphinemura1Tubificinae1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius12Enchytraeidae2Allocapnia1Hydrobaenus1Chaetocladius1	Scraper Taxa0% Climbers0Taxa ListIIronoquia1Amphinemura1Tubificinae1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius12Enchytraeidae2Allocapnia1Hydrobaenus1Chaetocladius1	Ephemeroptera %	0
% Climbers0Taxa List1Ironoquia1Amphinemura1Tubificinae1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius12Enchytraeidae2Allocapnia1Hydrobaenus1Chaetocladius1	% Climbers0Taxa ListIronoquia1Amphinemura1Tubificinae1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius12Enchytraeidae2Allocapnia1Hydrobaenus1Chaetocladius1	Scraper Taxa	0
Taxa ListIronoquia1Amphinemura1Tubificinae1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius12Enchytraeidae2Allocapnia1Hydrobaenus1Chaetocladius1	Taxa ListIronoquia1Amphinemura1Tubificinae1Simuliidae1Prosimulium72Orthocladius/Cricotopus4Eukiefferiella5Diplocladius12Enchytraeidae2Allocapnia1Hydrobaenus1Chaetocladius1	% Climbers	0
		Simuliidae Prosimulium Orthocladius/Cricotopus Eukiefferiella Diplocladius Enchytraeidae Allocapnia Hydrobaenus Chaetocladius	1 1 72 4 5 12 2 1 1 1
		Chaetocladius	1

Physical Habitat			
EPA Rapid Bioassessment			
Bank Stability- Left Bank	5	Pool Variability	9
Bank Stability- Right Bank	4	Riparian Vegetative Zone Width- Left Bank	10
Channel Alteration	20	Riparian Vegetative Zone Width- Right Bank	10
Channel Flow Status	11	Sediment Deposition	7
Channel Sinuosity	6	Vegetative Protection (Left Bank)	5
Epifaunal Substrate/Available Cover	13	Vegetative Protection (Right Bank)	4
Pool Substrate Characterization	9		
		EPA Habitat Score	113
		EPA Narrative Ranking	PS
Maryland Biological Stream	Survey	PHI	
Drainage area (acres)	1999.8	Instream Wood Debris	14
Remoteness	14	Bank Stability	9
Shading	100		
Epifaunal Substrate	12	PHI Score	78.50
Instream Habitat	13	PHI Narrative Ranking	PD

Water Chemistry Dissolved Oxygen (mg/L) Specific Conductance (µS/cm) 13.78 150 pН Temperature (°C) 6.51 5.29

Geomorphic Assessments

Rosgen Level II Classification Data

8			
Drainage Area (mi ²)	3.125	Cross Sectional Area (ft ²)	22.8
Bankfull Width (ft)	17.2	Water Surface Slope (%)	0.415
Mean Bankfull Depth (ft)	1.3	Sinuosity	1.1*
Floodprone Width (ft)	20	D50 (mm)	0.17
Entrenchment Ratio	1.2	Adjustments?	†Sin, ↓W/D
Width to Depth Ratio	13	Rosgen Stream Type	G5c
*=Estimated			
<u>.</u>		20-01, Glide	
2 0 10 20		30 40 50	60
-4			
<u>5</u> 6			

Width

Total Individuals

102

-10

-12

Location/Site Access: Located at end of Conservation Lane, 0.15m west Latitude/Longitude: 38.87129/-76.66612

Land Use Analysis:

Land Use	Acres	% Area
Commercial	4.3	0.4
Open Space	57.9	4.8
Pasture/Hay	86.7	7.2
Residential 1/2-		
acre	1.2	0.1
Residential 1-		
acre	43.1	3.6
Residential 2-		
acre	232.5	19.3
Row Crops	232.3	19.3
Transportation	17.8	1.5
Woods	526.4	43.8
Grand Total	1202.0	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
46.8	1202.0	3.9

Results:

- Biological condition "Good"
- Habitat scores "Partially Supporting" and "Degraded"
- Biological community is in better condition than expected for measured level of habitat quality.
- Riparian features are intact, but bank and pool features are marginal
- Sample dominated by midges (*Tanytarsus*) and stoneflies (*Haploperla*)
- Stream type was identified as an C5, slope was 0.32 percent, and the median channel substrate was medium sand
- Typically, C channels are stable. However, this channel has marginal bank features and excessive sediment deposition, and may be moving toward an unstable form.

- Maintain protection of the riparian area.
- Plan for hydrologic stability with potential increases in imperviousness.

Rock Branch Sampling Unit

IBI and Metric Scores	
Narrative Rating	Good
Overall Index	4.43
Total Taxa Score	5
FPT Taxa Score	5
Enhemerontera Tava Score	3
Intelerent Urban % Score	5
Enhamanatan % Score	3
Ephemeroptera % Score	3
Scraper Taxa Score	5
% Climbers	5
Calculated Metric Values	
Total Taxa	31
EPT Taxa	8
Ephemeroptera Taxa	1
Intolerant Urban %	47.62
Ephemeroptera %	3.81
Scraper Taxa	2
% Climbers	20.95
Taxa List	
Tanytarsus	21
Orthocladiinae	1
Orthociadius	1
Parametriocnemus	3
Paratendipes	1
Prosimulium	2
Prostoma	1
Stilocladius	1
Taenionema	2
Bezzia/Palpomyia	1
Mallochohelea	1
Neophylax	5
Synurella	1
Diplocladius	2
Amphinemura	12
Antocha En shartan si da s	1
Corvinoneura	1
Nemata	1
Eccoptura	1
Ephemerella	4
Eukiefferiella	3
Gomphidae	1
Haploperla	19
Hydrobaenus	5 8
Leptoceridae	1
Menetus	1
Cheumatopsyche	1
Total Individuals	105

Physical Habitat			
EFA Kapiu bioassessment		N	
Bank Stability- Left Bank	3	Pool Variability	9
Bank Stability- Right Bank	5	Riparian Vegetative Zone Width- Left Bank	10
Channel Alteration	20	Riparian Vegetative Zone Width- Right Bank	10
Channel Flow Status	11	Sediment Deposition	7
Channel Sinuosity	9	Vegetative Protection (Left Bank)	3
Epifaunal Substrate/Available Cover	12	Vegetative Protection (Right Bank)	5
Pool Substrate Characterization	7		
		EPA Habitat Score	111
		EPA Narrative Ranking	PS
Maryland Biological Stream	Survey]	PHI	
Drainage area (acres)	1202.0	Instream Wood Debris	6
Remoteness	8	Bank Stability	8
Shading	95		
Epifaunal Substrate	6	PHI Score	64.17
Instream Habitat	12	PHI Narrative Ranking	D
Water Chemistry			

water Chemistry			
Dissolved Oxygen (mg/L)	13.12	Specific Conductance (μ S/cm)	153
рН	6.85	Temperature (°C)	3.8

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi ²)
Bankfull Width (ft)
Mean Bankfull Depth (ft)
Floodprone Width (ft)
Entrenchment Ratio
Width to Depth Ratio

1.9	Cross Sectional Area (ft ²)	43.2
23.8	Water Surface Slope (%)	0.32
1.8	Sinuosity	1.5
75	D50 (mm)	0.47
3.2	Adjustments?	None
13.1	Rosgen Stream Type	C5

Location/Site Access: Located at Anne Arundel Golf Course Latitude/Longitude: 38.85295/-76.65797

Land Use Analysis:

Land Use	Acres	% Area
Row Crops	11.6	65.9
Woods	6.0	34.1
Grand Total	17.6	100

Impervious	Total Area	%
(acres)	Above site	Impervious
0.36	17.6	2.0

Results:

- Biological condition "Very Poor"
- Habitat scores "Partially Supporting" and "Partially Degraded"
- The biological community is in worse condition than expected for the habitat quality
- Riparian features are intact, but pool and substrate features are poor, and flow conditions are marginal
- Sample heavily dominated by midges (*Diplocladius* and *Chaetocladius*)
- Stream type was identified as an B5c, slope was 1.6 percent, and the median channel substrate was fine to medium sand
- Typically, B channels are stable. However, this channel has suboptimal bank and substrate features, and may be unstable

- Maintain protection of the riparian area.
- Plan for hydrologic stability with potential increases in imperviousness.
- Investigate possible causes of biological degradation, such as intermittent flow

Rock Branch Sampling Unit

Pool Variability

EPA Habitat Score

EPA Narrative Ranking

3

10

10

13

6

6

102

PS

IBI and Metric Scores	
Narrative Rating	Very Poor
Overall Index	1.29
Total Taxa Score	3
EPT Taxa Score	1
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	1
Ephemeroptera % Score	1
Scraper Taxa Score	1
% Climbers	1
Calculated Metric Values	
Total Taxa	18
EPT Taxa	1
Ephemeroptera Taxa	0
Intolerant Urban %	2.5
Ephemeroptera %	0
Scraper Taxa	0
% Climbers	0.83
Taxa List	
Allocapnia	1
Diplocladius	65
Bittacomorpha	1
Pisidiidae	8
Charte de disc	2
Culiacidas	12
Tubificingo	1
Hydrobaenus	0
Corduliinae/Libellulinae	4
Zavrelimvia	5
Synurella	3
Rheocricotopus	3
Pisidium	3

Physical Habitat EPA Rapid Bioassessment Bank Stability- Left Bank Bank Stability- Right Bank

Bank Stability- Right Bank	6	Riparian Vegetative Zone Width- Left Bank
Channel Alteration	20	Riparian Vegetative Zone Width- Right Bank
Channel Flow Status	7	Sediment Deposition
Channel Sinuosity	9	Vegetative Protection (Left Bank)
Epifaunal Substrate/Available Cover	3	Vegetative Protection (Right Bank)
Pool Substrate Characterization	3	

6

Maryland Biological Stream Survey PHI

Drainage area (acres)	17.6	Instream Wood Debris	8
Remoteness	8	Bank Stability	12
Shading	100		
Epifaunal Substrate	2	PHI Score	72.95
Instream Habitat	3	PHI Narrative Ranking	PD
Water Chemistry			
Dissolved Oxygen (mg/L)	7.09	Specific Conductance (μ S/cm)	191
pH	5.34	Temperature (°C)	8.46

Geomorphic Assessments

Rosgen Level II Classification Data

0.03	Cross Sectional Area (ft ²)	3.7
6.0	Water Surface Slope (%)	1.6
0.6	Sinuosity	1.2
12	D50 (mm)	0.25
2.0	Adjustments?	↑W/D
10	Rosgen Stream Type	B5c
	0.03 6.0 0.6 12 2.0 10	 0.03 Cross Sectional Area (ft²) 6.0 Water Surface Slope (%) 0.6 Sinuosity 12 D50 (mm) 2.0 Adjustments? 10 Rosgen Stream Type

Total Individuals

Orthocladiinae

Limnodrilus Polypedilum

Nais

1

2 1

1

Location/Site Access: Located at Polling House Rd. Anne Arundel Manor Golf Course Latitude/Longitude: 38.86217/-76.66261

Land Use Analysis:

Land Use	Acres	% Area
Open Space	1.0	0.8
Residential 1-		
acre	6.4	5.4
Residential 2-		
acre	21.8	18.6
Row Crops	48.0	41.0
Transportation	1.3	1.1
Woods	38.7	33.0
Grand Total	117.1	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
2.7	117.1	2.3

Results:

- Biological condition "Very Poor"
- Habitat scores "Not Supporting" and "Partially Degraded"
- Habitat assessment results were mixed for this site, but biological community observed is trending toward more than expected impairment based on the observed habitat quality.
- Several habitat features are marginal and poor
- Sample dominated by blackflies (*Stegopterna*) and midges (*Hydrobaenus* and *Tvetenia*)
- Stream type was identified as an G5s, slope was 0.584 percent, and the median channel substrate was fine sand
- This channel has unstable banks, excessive fine sediments, and marginal pool quality, all of which indicate channel instability.

- Protect the riparian area.
- Plan for hydrologic stability with potential increases in imperviousness.
- Determine need, feasibility of BMP installation on agricultural, developed lands upstream of site.
- Investigate possible causes of channel instability

Rock Branch Sampling Unit

Narrative Rating	Very Poo
Overall Index	1.86
Total Taxa Score	3
EPT Taxa Score	1
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	5
Ephemeroptera % Score	1
Scraper Taxa Score	1
% Climbers	1
Calculated Metric Values	
Total Taxa	15
EPT Taxa	1
Ephemeroptera Taxa	0
Intolerant Urban %	43.59
Ephemeroptera %	0
Scraper Taxa	0
% Climbers	0
Taxa List	
Hydrobaenus	20
Simulium	1
Tubificinae	3
Zalutschia	1
Tvetenia	19
Stegopterna	36
Spirosperma	2
Orthocladius/Cricotopus	2
Nemata	1
Diplociadius	2
Chastagladius	
Enchytraeidae	07
Agabus	/
Azabus	1

Total In	dividuals
----------	-----------

117

<u>Physical Habitat</u>			
EPA Rapid Bioassessment			
Bank Stability- Left Bank	3	Pool Variability	7
Bank Stability- Right Bank	4	Riparian Vegetative Zone Width- Left Bank	10
Channel Alteration	19	Zone Width- Right Bank	1
Channel Flow Status	11	Sediment Deposition	8
Channel Sinuosity	3	Vegetative Protection (Left Bank)	3
Epifaunal Substrate/Available Cover	9	Vegetative Protection (Right Bank)	4
Pool Substrate Characterization	9		
		EPA Habitat Score	91
		EPA Narrative Ranking	NS
Maryland Biological Stream S	Survey	PHI	
	-		

Drainage area (acres) Instream Wood Debris 117.1 12 Remoteness Bank Stability 11 7 Shading 95 Epifaunal Substrate 3 PHI Score 73.80 PHI Narrative Ranking Instream Habitat 9 PD Water Chemistry

Dissolved Oxygen (mg/L)	10.32	Specific Conductance (µS/cm)	78
рН	5.61	Temperature (°C)	9.43

3.7

0.584 1.2* 0.18 ↓W/D

G5c

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi ²)	0.18	Cross Sectional Area (ft ²)
Bankfull Width (ft)	6.8	Water Surface Slope (%)
Mean Bankfull Depth (ft)	0.5	Sinuosity
Floodprone Width (ft)	9.2	D50 (mm)
Entrenchment Ratio	1.3	Adjustments?
Width to Depth Ratio	12.7	Rosgen Stream Type

*Estimated

Location/Site Access: Located at 4440 Windsor Farm Road Latitude/Longitude: 38.86958/-76.6395

Land Use Analysis:

Land Use	Acres	% Area
Commercial	4.7	0.8
Open Space	29.0	5.2
Pasture/Hay	63.0	11.2
Residential 1/2-	13	0.2
acre	1.5	0.2
Residential 1-	20.1	3.6
acre	20.1	5.0
Residential 2-	130.8	23.3
acre	150.0	23.5
Row Crops	56.8	10.1
Transportation	11.0	2.0
Woods	245.2	43.6
Grand Total	561.9	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
31.5	561.9	5.6

Results:

- Biological condition "Poor"
- Habitat scores "Partially Supporting" and "Degraded"
- Biological community is appropriate for observed habitat quality.
- Riparian features are intact, but bank features are poor and other features are marginal
- Sample dominated by blackflies (*Prosimulium* and *Simuliidae*) and midges (*Diplocladius*)
- Stream type was identified as an G5c, slope was 0.616 percent, and the median channel substrate was estimated as fine or medium sand
- This channel has failing banks and excessive sediment deposition, indicating channel instability

- Maintain protection of the riparian area.
- Determine if water quality impacts are associated with residential, agricultural lands—correct as necessary and feasible.
- Plan for hydrologic stability with potential increases in imperviousness.

Rock Branch Sampling Unit

Narrative Rating Overall Index Total Taxa Score EPT Taxa Score Ephemeroptera Taxa Score Intolerant Urban % Score Ephemeroptera % Score Scraper Taxa Score % Climbers Calculated Metric Values	Poor 2.14 3 3 1 5 1 1
Overall IndexTotal Taxa ScoreEPT Taxa ScoreEphemeroptera Taxa ScoreIntolerant Urban % ScoreEphemeroptera % ScoreScraper Taxa Score% ClimbersCalculated Metric Values	2.14 3 1 5 1 1
Total Taxa Score EPT Taxa Score Ephemeroptera Taxa Score Intolerant Urban % Score Ephemeroptera % Score Scraper Taxa Score % Climbers Calculated Metric Values	3 3 1 5 1 1
EPT Taxa Score Ephemeroptera Taxa Score Intolerant Urban % Score Ephemeroptera % Score Scraper Taxa Score % Climbers Calculated Metric Values	3 1 5 1 1
Ephemeroptera Taxa Score Intolerant Urban % Score Ephemeroptera % Score Scraper Taxa Score % Climbers Calculated Metric Values	1 5 1 1
Intolerant Urban % Score Ephemeroptera % Score Scraper Taxa Score % Climbers Calculated Metric Values	5 1 1
Ephemeroptera % Score Scraper Taxa Score % Climbers Calculated Metric Values	1
Scraper Taxa Score % Climbers Calculated Metric Values	1
% Climbers Calculated Metric Values	
Calculated Metric Values	1
Total Taxa	15
EPT Taxa	4
Ephemeroptera Taxa	0
Intolerant Urban %	51
Ephemeroptera %	0
Scraper Taxa	0
% Climbers	0
Taxa List	0
Neophylax	3
Stegopterna	9
Paranemoura	2
Simuliidae	10
Pseudorthocladius	1
Prosimulium	34
Orthocladius/Cricotopus	4
Diplocladius	23
Limnodrilus	1
Ironoquia	1
Hydrobaenus	5
Eukiefferiella	1
Enchytraeidae	2
Dolichopodidae	1
Nemouridae	3

Physical Habitat EPA Ranid Riggson

EPA Rapid Bloassessment		
Bank Stability- Left Bank	2	Pool
Bank Stability- Right Bank	3	Ripa
Channel Alteration	3	Ripa
Channel Alteration	20	Zone
Channel Flow Status	10	Sedi
Channel Sinuosity	7	Veg
Epifaunal Substrate/Available Cover	11	Veg
Pool Substrate Characterization	9	

.....

Riparian Vegetative Zone Width- Left Bank	1
Riparian Vegetative	-
Zone Width- Right Bank	1
Sediment Deposition	
Vegetative Protection (Left Bank)	
Vegetative Protection (Right Bank)	
EPA Habitat Score	10
EPA Narrative Ranking	Р

Maryland Biological Stream Survey PHI

Drainage area (acres)	561.9	Instream Wood Debris	7
Remoteness	6	Bank Stability	5
Shading	85		
Epifaunal Substrate	4	PHI Score	58.79
Instream Habitat	11	PHI Narrative Ranking	D
Water Chemistry			
Dissolved Oxygen (mg/L)	12.55	Specific Conductance (μ S/cm)	210
pH	6.73	Temperature (°C)	11.09

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi ²)	0.89	Cross Sectional Area (ft ²)	8.9
Bankfull Width (ft)	7.6	Water Surface Slope (%)	0.616
Mean Bankfull Depth (ft)	1.2	Sinuosity	1.2
Floodprone Width (ft)	10.9	D50 (mm)	0.25*
Entrenchment Ratio	1.4	Adjustments?	↓ER
Width to Depth Ratio	6.5	Rosgen Stream Type	G5c
*Estimated			
		20-05, Riffle	
$ \begin{array}{c} 0 \\ -1 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -1 \\ -5 \\ -10 \\ -5 \\ -10 \\ -5 \\ -10 \\ -5 \\ -10 \\ -5 \\ -10 \\ -5 \\ -5 \\ -10 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5$	20	25 30 35 40	45

ле.н.

*Est

Total Individuals

Location/Site Access: Located at Anne Arundel Manor Golf Course Latitude/Longitude: 38.85619/-76.66975

Land Use Analysis:

Land Use	Acres	% Area
Industrial	25.8	9.0
Open Space	5.4	1.9
Residential 1-		
acre	7.4	2.6
Residential 2-		
acre	34.6	12.0
Row Crops	103.0	35.8
Transportation	1.3	0.5
Water	0.3	0.1
Woods	109.6	38.1
Grand Total	287.5	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
4.4	287.5	1.5

Results:

- Biological condition "Fair"
- Habitat scores "Non Supporting" and "Partially Degraded"
- Habitat assessment results were mixed for this site, but biological community observed is better than expected for the observed habitat quality.
- Riparian features are intact, but bank, substrate, and pool features are marginal at best
- Sample is biologically diverse and dominated by crane flies (*Pilaria*) and caddisflies (*Diplectrona*)
- Stream type was identified as an G5c, slope was 0.8 percent, and the median channel substrate was medium sand
- This channel is unstable, as indicated by bank and substrate habitat features

- Maintain protection of the riparian area.
- Plan for hydrologic stability with potential increases in imperviousness.
- Determine need, feasibility of stormwater management on residential, agricultural lands
- Restore habitat features, if feasible

Rock Branch Sampling Unit

IBI and Metric Scores	
Narrative Rating	Fair
Overall Index	3.57
Total Taxa Score	5
EPT Taxa Score	5
Ephemeroptera Taxa Score	5
Intolerant Urban % Score	3
Ephemeroptera % Score	3
% Climbers	1 3
Calculated Metric Values	
Total Taxa	41
EPT Taxa	6
Ephemeroptera Taxa	2
Enhemerontera %	22
Scraper Taxa	0
% Climbers	3
Taxa List	
Nigronia	1
Pilaria	13
Paratendipes	1
Parametriocnemus	1
Parakiefferiella	1
Paraciadopeima	1
Ormosia	1
Tipula	3
Orthocladius/Cricotopus	1
Pycnopsyche	1
Sialis	1
Pisidiidae	2
Stenelmis	4
Bezzia/Paipomyia	5
Thienemannimyia genus group	6
Hydrobaenus	1
Nemata	2
Stempellinella	1
Chaetocladius	1
Natarsia	5
Nais A quarius	1
Baetis	1
Caenis	1
Chloroperlidae	3
Cordulegaster	1
Culicoides	1
Diplectrona	10
Eukieneriella Gammarus	3
Hemerodromia	1
Heterotrissocladius	2
Hexatoma	1
Hydatophylax	4
Anchytarsus	7
Diplocladius	5
Adiabesmyia	2
Limnodrilus	1
	-
Total Individuals	100

FPA Ranid Bioassessment			
Bank Stability- Left Bank	2	Pool Variability	5
Bank Stability- Right Bank	4	Riparian Vegetative Zone Width- Left Bank	10
Channel Alteration	20	Riparian Vegetative Zone Width- Right Bank	10
Channel Flow Status	9	Sediment Deposition	7
Channel Sinuosity	9	Vegetative Protection (Left Bank)	3
Epifaunal Substrate/Available Cover	9	Vegetative Protection (Right Bank)	4
Pool Substrate Characterization	5		
			00
		EPA Habitat Score	98
	a	EPA Habitat Score EPA Narrative Ranking	98 NS
Maryland Biological Stream Drainage area (acres)	287.5	EPA Habitat Score EPA Narrative Ranking PHI Instream Wood Debris	98 NS 10
Maryland Biological Stream Drainage area (acres) Remoteness	287.5	EPA Habitat Score EPA Narrative Ranking PHI Instream Wood Debris Bank Stability	98 NS 10 7
Maryland Biological Stream Drainage area (acres) Remoteness Shading	Survey 287.5 8 100	EPA Habitat Score EPA Narrative Ranking PHI Instream Wood Debris Bank Stability	98 NS 10 7
Maryland Biological Stream Drainage area (acres) Remoteness Shading Epifaunal Substrate	Survey 287.5 8 100 4	EPA Habitat Score EPA Narrative Ranking PHI Instream Wood Debris Bank Stability PHI Score	98 NS 10 7 67.45
Maryland Biological Stream Drainage area (acres) Remoteness Shading Epifaunal Substrate Instream Habitat	Survey 287.5 8 100 4 9	EPA Habitat Score EPA Narrative Ranking PHI Instream Wood Debris Bank Stability PHI Score PHI Narrative Ranking	98 NS 10 7 67.45 PD
Maryland Biological Stream Drainage area (acres) Remoteness Shading Epifaunal Substrate Instream Habitat Water Chemistry	Survey 287.5 8 100 4 9	EPA Habitat Score EPA Narrative Ranking PHI Instream Wood Debris Bank Stability PHI Score PHI Narrative Ranking	98 NS 10 7 67.45 PD
Maryland Biological Stream Drainage area (acres) Remoteness Shading Epifaunal Substrate Instream Habitat Water Chemistry Dissolved Oxygen (mg/L)	Survey 287.5 8 100 4 9 11.24	EPA Habitat Score EPA Narrative Ranking PHI Instream Wood Debris Bank Stability PHI Score PHI Narrative Ranking Specific Conductance (µS/cm)	98 NS 10 7 67.45 PD 574

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi ²)
Bankfull Width (ft)
Mean Bankfull Depth (ft)
Floodprone Width (ft)
Entrenchment Ratio
Width to Depth Ratio

6.2	Rosgen Stream Type	G5c
1.6	Adjustments?	↓ER, †Sin
20.1	D50 (mm)	0.27
2.1	Sinuosity	1.1
12.9	Water Surface Slope (%)	0.8
0.50	Cross Sectional Area (ft ²)	26.7

*Estimated

Location/Site Access: Located behind 4433 Cobalt Drive Latitude/Longitude: 38.86607/-76.62983

Land Use Analysis:

Land Use	Acres	% Area
Commercial	4.6	3.3
Open Space	14.2	10.2
Pasture/Hay	20.4	14.6
Residential 1-		
acre	3.1	2.2
Residential 2-		
acre	34.5	24.8
Row Crops	13.0	9.4
Transportation	3.5	2.5
Woods	45.7	32.9
Grand Total	139.0	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
10.9	139.0	7.8

Results:

- Biological condition "Poor"
- Habitat scores "Partially Supporting" and "Partially Degraded"
- Habitat assessment results were mixed for this site, but biological community observed is trending toward more than expected impairment based on the observed habitat quality.
- Riparian features are intact, but bank, substrate, and pool features are marginal at best
- Sample is dominated by midges (*Diplocladius* and *Orthocladius/Cricotopus*)
- Stream type was identified as an G5c, slope was 0.524 percent, and the median channel substrate was fine sand
- Typically, G channel are not stable. Marginal bank and substrate features indicate that this channel may be unstable

- Maintain protection of the riparian area.
- Plan for hydrologic stability with potential increases in imperviousness.
- Determine if existing residential, agricultural lands are impacting water quality and correct as necessary and feasible.

Rock Branch Sampling Unit

IBI and Metric Scores	
Narrative Rating	Poor
Overall Index	2.14
Total Taxa Score	5
EPT Taxa Score	3
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	1
Ephemeroptera % Score	1
Scraper Taxa Score	1
% Climbers	3
Calculated Metric Values	
Total Taxa	24
EPT Taxa	4
Ephemeroptera Taxa	0
Intolerant Urban %	9.17
Ephemeroptera %	0
Scraper Taxa	0
% Climbers	1.67
Taxa List	
Thienemannimyia genus group	1
Pisidium	1
Prosimulium	1
Pisidiidae	3
Tanytarsus	2
Tipula	1
Zavrelimyia	2
Paranemoura	2
Physidae	1
Simuliidae	4
Bezzia/Palpomyia	1
Diplocladius	48
Parametriocnemus	1
Stegopterna	7
Dasyhelea	1
Gammarus	1
Ironoquia	3
Limnephilidae	6
Limnodrilus	1
Nais	9
Nemouridae	1
Orthocladius	4
Orthocladius	
Culiagidas	10
Cuncoldes	2

<u>Physical Habitat</u>			
EPA Rapid Bioassessment			
Bank Stability- Left Bank	5	Pool Variability	3
Bank Stability- Right Bank	5	Riparian Vegetative Zone Width- Left Bank	10
Channel Alteration	20	Zone Width- Right Bank	10
Channel Flow Status	12	Sediment Deposition	9
Channel Sinuosity	4	Vegetative Protection (Left Bank)	6
Epifaunal Substrate/Available Cover	9	Vegetative Protection (Right Bank)	6
Pool Substrate Characterization	8		
		EPA Habitat Score	107
		EPA Narrative Ranking	PS
Maryland Biological Stream	Survey I	PHI	
Drainage area (acres)	139.0	Instream Wood Debris	8
Remoteness	8	Bank Stability	10
Shading	100		
Epifaunal Substrate	4	PHI Score	68.62
Instream Habitat	9	PHI Narrative Ranking	PD
Water Chemistry			
Dissolved Oxygen (mg/L)	12.86	Specific Conductance (µS/cm)	159
pH	6.75	Temperature (°C)	8.05

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi²) Bankfull Width (ft) Mean Bankfull Depth (ft) Floodprone Width (ft) Entrenchment Ratio Width to Depth Ratio

0.22	Cross Sectional Area (ft ²)	7.0
7.2	Water Surface Slope (%)	0.524
1.0	Sinuosity	1.0*
9.2	D50 (mm)	0.19
1.3	Adjustments?	↑Sin
7.4	Rosgen Stream Type	G5c

*Estimated

Total Individuals

Location/Site Access: Located at Polling House Road Crossing ~40m US Latitude/Longitude: 38.85086/-76.66547

Land Use Analysis:

Land Use	Acres	% Area
Commercial	0.6	0.1
Open Space	14.1	3.4
Pasture/Hay	15.5	3.8
Residential 1-		
acre	25.2	6.1
Residential 2-		
acre	51.2	12.4
Row Crops	112.9	27.4
Transportation	7.4	1.8
Water	0.6	0.2
Woods	184.4	44.8
Grand Total	412.0	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
12.3	412.0	3.0

Results:

- Biological condition "Poor"
- Habitat scores "Non Supporting" and "Degraded"
- The biological community observed is trending toward less than expected impairment based on the observed habitat quality.
- Riparian features are intact, but bank, substrate, and pool features are generally marginal
- Sample is dominated by midges (*Hydrobaenus*, *Diplocladius*, *Tanytarsus*, and *Eukiefferiella*)
- Stream type was identified as an B5, slope was 2.8 percent, and the median channel substrate was fine sand
- Typically, B channels are stable. However, this channel has suboptimal bank and substrate features, and may be unstable

- Maintain protection of the riparian area.
- Plan for hydrologic stability with potential increases in imperviousness.
- Determine need, feasibility of stormwater management on residential, agricultural lands upstream of site.

Rock Branch Sampling Unit

IBI and Metric Scores	
Narrative Rating	Poor
Overall Index	2.43
Total Taxa Score	3
EPT Taxa Score	3
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	3
Ephemeroptera % Score	1
Scraper Taxa Score	1
% Climbers	5
Calculated Metric Values	
Total Taxa	17
EPT Taxa	3
Ephemeroptera Taxa	0
Intolerant Urban %	10.89
Ephemeroptera %	0
Scraper Taxa	0
% Climbers	13.86
Taxa List	
Parametriocnemus	2
Bezzia/Palpomyia	2
Tvetenia	1
Thienemanniella	4
Tanytarsus	11
Taenionema	1
Pisidiidae	1
Polypedilum	3
Orthocladius/Cricotopus	5
Nais	14
Hydrobaenus	19
Eukiefferiella	10
Diplocladius	15
Corynoneura	1
Amphinemura	9
Paratendipes	1
Perlodidae	2

Total Individuals

<u>Physical Habitat</u>			
EPA Rapid Bioassessment			
Bank Stability- Left Bank	7	Pool Variability	5
Bank Stability- Right Bank	2	Riparian Vegetative Zone Width- Left Bank	9
Channel Alteration	18	Riparian Vegetative Zone Width- Right Bank	10
Channel Flow Status	10	Sediment Deposition	9
Channel Sinuosity	8	Vegetative Protection (Left Bank)	7
Epifaunal Substrate/Available Cover	7	Vegetative Protection (Right Bank)	2
Pool Substrate Characterization	5		
		EPA Habitat Score	99
		EPA Narrative Ranking	NS
Maryland Biological Stream	Survey]	РНІ	
Drainage area (acres)	412.0	Instream Wood Debris	8
Remoteness	2	Bank Stability	8
Shading	100		
Epifaunal Substrate	5	PHI Score	59.20
Instream Habitat	7	PHI Narrative Ranking	D
Water Chemistry			
Dissolved Oxygen (mg/L)	12.86	Specific Conductance (µS/cm)	190
pH	6.44	Temperature (°C)	8.92

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi ²)	0.6
Bankfull Width (ft)	12.
Mean Bankfull Depth (ft)	1.2
Floodprone Width (ft)	20.
Entrenchment Ratio	1.7
Width to Depth Ratio	9.8

9.8	Rosgen Stream Type	B5
1.7	Adjustments?	↑W/D, ↑Sin
20.8	D50 (mm)	0.2
1.2	Sinuosity	1.1
12.1	Water Surface Slope (%)	2.8
0.64	Cross Sectional Area (ft ²)	14.9

*Estimated

Location/Site Access: Located at Anne Arundel Manor Golf Course Latitude/Longitude: 38.85157-76.67261

Land Use Analysis:

Land Use	Acres	% Area
Commercial	17.8	0.6
Industrial	10.7	0.3
Open Space	126.2	4.1
Pasture/Hay	210.9	6.9
Residential 1/2-		
acre	18.6	0.6
Residential 1-		
acre	122.2	4.0
Residential 2-		
acre	352.9	11.5
Row Crops	656.6	21.5
Transportation	46.6	1.5
Water	7.4	0.2
Woods	1486.4	48.6
Grand Total	3056.3	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
102.6	3056.3	3.4

Results:

- Biological condition "Fair"
- Habitat scores "Supporting" and "Partially Degraded"
- Biological condition is in sync with available habitat quality.
- Riparian features are intact, and most other habitat features are in the sub-optimal range
- Sample is dominated by midges (*Tanytarsus* and *Hydrobaenus*)
- Stream type was identified as an F5, slope was 0.283 percent, and the median channel substrate was medium sand
- This channel has suboptimal bank and substrate features, and may be sensitive to increased hydrologic disturbance

- Maintain protection of the riparian area.
- Plan for hydrologic stability with potential increases in imperviousness.
- Determine need, feasibility of BMP retrofits to control stormwater runoff from agricultural, residential lands.

Rock Branch Sampling Unit

IBI and Metric Scores	
Narrative Rating	Fair
Overall Index	3.00
Total Taxa Score	5
EPT Taxa Score	3
Ephemeroptera Taxa Score	3
Intolerant Urban % Score	1
Ephemeroptera % Score	3
Scraper Taxa Score	1
% Climbers	5
Calculated Metric Values	
Total Taxa	26
EPT Taxa	4
Enhemerontera Taxa	1
Intolerant Urban %	7 56
Enhemerontera %	2.50
Scraper Taxa	0
% Climbors	42.7
% Climbers	43.7
Taxa List	2
Prosimulium	3
Stepelmis	1
Stilocladius	1
Synurella	1
Taenionema	3
Tanytarsus	52
Tribelos	1
Bezzia/Palpomvia	1
Thienemannimyia genus group	1
Parametriocnemus	1
Mallochohelea	1
Dubiraphia	1
Paratanytarsus	2
Pisidium	6
Allocapnia	1
Diplocladius	8
Eukiefferiella	2
Gyraulus	8
Hemerodromia	1
Hexatoma	1
Hydrobaenus	13
A component	4
Ablabesmyia	5 1
Diplectrona	1
1	-

Total	Individuals
-------	-------------

119

Physical Habitat			
EPA Rapid Bioassessment			
Bank Stability- Left Bank	6	Pool Variability	12
Bank Stability- Right Bank	6	Riparian Vegetative Zone Width- Left Bank	10
Channel Alteration	20	Zone Width- Right Bank	10
Channel Flow Status	11	Sediment Deposition	7
Channel Sinuosity	10	Vegetative Protection (Left Bank)	6
Epifaunal Substrate/Available Cover	15	Vegetative Protection (Right Bank)	6
Pool Substrate Characterization	12		
		EPA Habitat Score	131
		EPA Narrative Ranking	S
Maryland Biological Stream	Survey]	PHI	
Drainage area (acres)	3056.3	Instream Wood Debris	7
Remoteness	10	Bank Stability	12
Shading	100		
Epifaunal Substrate	12	PHI Score	73.05
Instream Habitat	15	PHI Narrative Ranking	PD
Water Chemistry			
Dissolved Oxygen (mg/L)	12.36	Specific Conductance (µS/cm)	160
pH	6.79	Temperature (°C)	6.33

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi ²)	4
Bankfull Width (ft)	24
Mean Bankfull Depth (ft)	1
Floodprone Width (ft)	31
Entrenchment Ratio	1
Width to Depth Ratio	15

4.8	Cross Sectional Area (ft ⁻)	39.5
24.4	Water Surface Slope (%)	0.283
1.6	Sinuosity	1.3
31.1	D50 (mm)	0.4
1.3	Adjustments?	None
15.1	Rosgen Stream Type	F5

*Estimated

20-11A

Rock Branch Sampling Unit

Location/Site Access: Located at 4752 S. Polling House Road : Behind House Latitude/Longitude: 38.84806/-76.63237

Land Use Analysis:

Land Use	Acres	% Area
Open Space	2.3	2.5
Residential 1/2-	0.5	0.5
acre	0.5	0.5
Residential 1-	03	03
acre	0.5	0.5
Residential 2-	16.1	17.1
acre	10.1	17.1
Row Crops	26.2	27.8
Transportation	1.7	1.8
Woods	47.1	50.0
Grand Total	94.2	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
3.8	94.2	4.0

Results:

- Biological condition "Very Poor"
- Habitat scores "Non Supporting" and "Degraded"
- Habitat assessment results were mixed for this site, but biological community observed is trending toward more than expected impairment based on the observed habitat quality.
- Riparian features are largely intact, but bank features are poor and substrate features are marginal
- Sample is heavily dominated by midges (*Chaetocladius* and *Hydrobaenus*)
- Stream type was identified as an G5c, slope was 1.14 percent, and the median channel substrate was estimated as fine or medium sand
- Typically, G channels are not stable. This channel has poor bank conditions, and is apparently unstable

- Maintain protection of the riparian area.
- Plan for hydrologic stability with potential increases in imperviousness.
- Restore habitat stability and diversity, if feasible
- Determine need, feasibility of stormwater management on residential, agricultural lands upstream

20-11A

Rock Branch Sampling Unit

IBI and Metric Scores	
Narrative Rating	Very Poor
Overall Index	1.57
Total Taxa Score	1
EPT Taxa Score	3
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	3
Ephemeroptera % Score	1
Scraper Taxa Score	1
% Climbers	1
Calculated Metric Values	
Total Taxa	12
EPT Taxa	3
Ephemeroptera Taxa	0
Intolerant Urban %	16
Ephemeroptera %	0
Scraper Taxa	0
% Climbers	0
Taxa List	
Diplocladius	6
Orthocladius/Cricotopus	4
Synurella	1
Stegopterna	8
Smittia	1
Prosimulium	3
Hydrobaenus	27
Chaetocladius	43
Enchytraeidae	2
Amphinemura	3
Allocapnia	1
Nemouridae	1

Total Individuals

100

<u>Physical Habitat</u>			
EPA Rapid Bioassessment			
Bank Stability- Left Bank	2	Pool Variability	5
Bank Stability- Right Bank	2	Riparian Vegetative Zone Width- Left Bank	10
Channel Alteration	19	Riparian Vegetative Zone Width- Right Bank	8
Channel Flow Status	14	Sediment Deposition	9
Channel Sinuosity	7	Vegetative Protection (Left Bank)	3
Epifaunal Substrate/Available Cover	7	Vegetative Protection (Right Bank)	3
Pool Substrate Characterization	7		
		EPA Habitat Score	96
		EPA Narrative Ranking	NS
Maryland Biological Stream	Survey F	PHI	
Drainage area (acres)	94.2	Instream Wood Debris	5
Remoteness	2	Bank Stability	4
Shading	100		
Epifaunal Substrate	5	PHI Score	61.53
Instream Habitat	7	PHI Narrative Ranking	D
Water Chemistry			
Dissolved Oxygen (mg/L)	10.48	Specific Conductance (µS/cm)	199
pH	6.24	Temperature (°C)	11.57

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi²) Bankfull Width (ft) Mean Bankfull Depth (ft) Floodprone Width (ft) Entrenchment Ratio Width to Depth Ratio

Rosgen Stream Type G5c

*Estimated

Cabin Branch Sampling Unit

This page intentionally left blank.

Location/Site Access: Located at Upper Pindell Road Latitude/Longitude: 38.7755/-76.67653

Land Use Analysis:

Land Use	Acres	% Area
Commercial	0.6	0.1
Open Space	17.9	2.8
Pasture/Hay	69.3	10.8
Residential 1/2-		
acre	22.7	3.6
Residential 1-		
acre	26.2	4.1
Residential 2-		
acre	21.8	3.4
Row Crops	119.3	18.6
Transportation	32.3	5.0
Woods	330.3	51.6
Grand Total	640.4	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
30.7	640.4	4.7

Results:

- Biological condition "Fair"
- Habitat scores "Partially Supporting" and incomplete
- Biological community is in better condition than expected for measured level of habitat quality.
- Riparian features are intact, but bank, substrate, and pool features are marginal or suboptimal
- Sample is dominated by midges (*Eukiefferiella*, *Diplocladius*, and *Hydrobaenus*)
- Stream type was identified as an B5c, slope was 0.238 percent, and the median channel substrate was medium sand
- Typically, B channels are stable. However, this channel has marginal conditions along the left bank and excess sediment deposition, and may be unstable

- Maintain protection of the riparian area.
- Plan for hydrologic stability with potential increases in imperviousness
- Determine need, feasibility of runoff management on residential, agricultural lands upstream of site.

Cabin Branch Sampling Unit

IBI and Metric Scores	
Narrative Rating	Fair
Overall Index	3
Total Taxa Score	5
EPT Taxa Score	5
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	3
Ephemeroptera % Score	1
Scraper Taxa Score	1
% Climbers	5
Calculated Metric Values	
Total Taxa	22
EPT Taxa	6
Ephemeroptera Taxa	0
Intolerant Urban %	12.38
Ephemeroptera %	0
Scraper Taxa	0
% Climbers	10.48
Taxa List	
Thienemannimyia genus group	1
Orthocladius/Cricotopus	8
Parametriocnemus	5
Pilaria	1
Polypedilum	1
Simulium	1
Tanytarsus	9
Nigronia	1
Dixella	2
Stegopterna	3
Diplocladius	18
Hydrobaenus	10
Neophylax	3
Amphinemura	5
Calopteryx	1
Allocapnia	1
Eukiefferiella	21
Nais	1
Nemoura	1
Ancyronyx	1
	-

EPA Rapid Bioassessment			
Bank Stability- Left Bank	6	Pool Variability	11
Bank Stability- Right Bank	3	Riparian Vegetative Zone Width- Left Bank	10
Channel Alteration	20	Zone Width- Right Bank	10
Channel Flow Status	13	Sediment Deposition	7
Channel Sinuosity	11	Vegetative Protection (Left Bank)	6
Epifaunal Substrate/Available Cover	13	Vegetative Protection (Right Bank)	3
Pool Substrate Characterization	8		
		EPA Habitat Score	121
Marvland Biological Stream	Survey	EPA Habitat Score EPA Narrative Ranking PHI	121 PS
Maryland Biological Stream	Survey	EPA Habitat Score EPA Narrative Ranking PHI Instream Wood Debris	121 PS
Maryland Biological Stream Drainage area (acres) Remoteness	640.4	EPA Habitat Score EPA Narrative Ranking PHI Instream Wood Debris Bank Stability	121 PS
Maryland Biological Stream Drainage area (acres) Remoteness Shading	Survey 640.4 9 90	EPA Habitat Score EPA Narrative Ranking PHI Instream Wood Debris Bank Stability	121 PS 9
Maryland Biological Stream Drainage area (acres) Remoteness Shading Epifaunal Substrate	Survey 640.4 9 90 9	EPA Habitat Score EPA Narrative Ranking PHI Instream Wood Debris Bank Stability PHI Score (INCOMPLETE)	121 PS 9
Maryland Biological Stream Drainage area (acres) Remoteness Shading Epifaunal Substrate Instream Habitat	Survey 640.4 9 90 9 13	EPA Habitat Score EPA Narrative Ranking PHI Instream Wood Debris Bank Stability PHI Score (INCOMPLETE) PHI Narrative Ranking	121 PS 9
Maryland Biological Stream Drainage area (acres) Remoteness Shading Epifaunal Substrate Instream Habitat Water Chemistry	Survey 640.4 9 90 9 13	EPA Habitat Score EPA Narrative Ranking PHI Instream Wood Debris Bank Stability PHI Score (INCOMPLETE) PHI Narrative Ranking	121 PS 9
Maryland Biological Stream Drainage area (acres) Remoteness Shading Epifaunal Substrate Instream Habitat Water Chemistry Dissolved Oxygen (mg/L)	Survey 640.4 9 90 9 13 6.82	EPA Habitat Score EPA Narrative Ranking PHI Instream Wood Debris Bank Stability PHI Score (INCOMPLETE) PHI Narrative Ranking Specific Conductance (µS/cm)	121 PS 9

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi ²)
Bankfull Width (ft)
Mean Bankfull Depth (ft)
Floodprone Width (ft)
Entrenchment Ratio
Width to Depth Ratio

1.0	Cross Sectional Area (ft ²)	10.4
11.8	Water Surface Slope (%)	0.238
0.9	Sinuosity	1.6
20.6	D50 (mm)	0.31
1.7	Adjustments?	None
13.3	Rosgen Stream Type	B5c

*Estimated

Total Individuals

Cabin Branch Sampling Unit

Location/Site Access: Located at MISSING DATA Latitude/Longitude: 38.7621/-76.68803

Land Use Analysis:

Land Use	Acres	% Area
Commercial	0.6	0.1
Open Space	19.8	2.1
Pasture/Hay	83.7	8.8
Residential 1/2-		
acre	23.7	2.5
Residential 1-		
acre	56.4	5.9
Residential 2-		
acre	39.6	4.2
Row Crops	169.3	17.8
Transportation	41.8	4.4
Woods	515.9	54.3
Grand Total	950.8	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
36.8	950.8	3.9

Results:

- Biological condition "Poor"
- Habitat scores "Partially Supporting" and "Degraded"
- Biological conditions agree with observed habitat quality.
- Riparian features are intact, but bank and substrate features are marginal
- Sample is heavily dominated by midges (*Diplocladius*) and blackflies (*Simulium*)
- Stream type was identified as an E5, slope was 0.048 percent, and the median channel substrate was estimated as fine or medium sand
- Typically, E channels are stable. This channel has marginal bank and substrate conditions, and may be unstable

- Maintain protection of the riparian area.
- Plan for hydrologic stability with potential increases in imperviousness.
- Determine need, feasibility of stormwater management on agricultural, residential lands upstream.

Cabin Branch Sampling Unit

IBI and Metric Scores	
Narrative Rating	Poor
Overall Index	2.14
Total Taxa Score	5
EPT Taxa Score	3
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	- 1
Enhemerontera % Score	- 1
Scraper Taya Score	1
% Climbers	3
Calculated Matria Values	5
Tatal Taxa	21
	51
EPI Iaxa	4
Epnemeroptera Taxa	0
Intolerant Urban %	4
Ephemeroptera %	0
	0
% Climbers	5
Taxa List	1
Polypedilum Pisidium	1
Simulium	10
Ptilostomis	1
Rheocricotopus	2
Sciaridae	1
Pisidiidae Stanolmia	3
Tanytarsus	1
Tipulidae	1
Tubificinae	4
Bezzia/Palpomyia	1
Phaenopsectra	1
Zavrelimyia	6
Orthocladius/Cricotopus	9
Hydroporinae	2
Ceratopogon	1
Chaetocladius	1
Culicoides	1
Diplociadius	24
Heterotrissocladius	1
Orthocladius	3
Limnephilidae	3
Limnodrilus	1
Lumbriculidae	1
Nemoura	5
Nemouridae	1
Hydrobaenus	3
Total Individuals	100

EPA Rapid Bioassessment			
Bank Stability- Left Bank	5	Pool Variability	10
Bank Stability- Right Bank	5	Riparian Vegetative Zone Width- Left Bank	10
Channel Alteration	20	Zone Width- Right Bank	10
Channel Flow Status	15	Sediment Deposition	8
Channel Sinuosity	9	Vegetative Protection (Left Bank)	6
Epifaunal Substrate/Available Cover	10	Vegetative Protection (Right Bank)	6
Pool Substrate Characterization	10		
		EPA Habitat Score	124
Marvland Biological Stream	Survey	EPA Habitat Score EPA Narrative Ranking PHI	124 PS
Maryland Biological Stream Drainage area (acres)	Survey 950.8	EPA Habitat Score EPA Narrative Ranking PHI Instream Wood Debris	124 PS 8
Maryland Biological Stream Drainage area (acres) Remoteness	Survey 950.8 6	EPA Habitat Score EPA Narrative Ranking PHI Instream Wood Debris Bank Stability	124 PS 8 10
Maryland Biological Stream Drainage area (acres) Remoteness Shading	Survey 950.8 6 100	EPA Habitat Score EPA Narrative Ranking PHI Instream Wood Debris Bank Stability	124 PS 8 10
Maryland Biological Stream Drainage area (acres) Remoteness Shading Epifaunal Substrate	Survey 950.8 6 100 3	EPA Habitat Score EPA Narrative Ranking PHI Instream Wood Debris Bank Stability PHI Score	124 PS 8 10 60.95
Maryland Biological Stream Drainage area (acres) Remoteness Shading Epifaunal Substrate Instream Habitat	Survey 950.8 6 100 3 10	EPA Habitat Score EPA Narrative Ranking PHI Instream Wood Debris Bank Stability PHI Score PHI Narrative Ranking	124 PS 8 10 60.95 D
Maryland Biological Stream Drainage area (acres) Remoteness Shading Epifaunal Substrate Instream Habitat Water Chemistry	Survey 950.8 6 100 3 10	EPA Habitat Score EPA Narrative Ranking PHI Instream Wood Debris Bank Stability PHI Score PHI Narrative Ranking	124 PS 8 10 60.95 D
Maryland Biological Stream Drainage area (acres) Remoteness Shading Epifaunal Substrate Instream Habitat Water Chemistry Dissolved Oxygen (mg/L)	Survey 950.8 6 100 3 10 7.97	EPA Habitat Score EPA Narrative Ranking PHI Instream Wood Debris Bank Stability PHI Score PHI Narrative Ranking Specific Conductance (µS/cm)	124 PS 8 10 60.95 D

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi ²)
Bankfull Width (ft)
Mean Bankfull Depth (ft)
Floodprone Width (ft)
Entrenchment Ratio
Width to Depth Ratio

1.48	Cross Sectional Area (ft ²)	15.9
12.3	Water Surface Slope (%)	0.048
1.3	Sinuosity	1.2
154	D50 (mm)	0.25*
12.6	Adjustments?	↑Sin
9.5	Rosgen Stream Type	E5

*Estimated

Cabin Branch Sampling Unit

Location/Site Access: Located at 5935 Tablot Road 0.15 Miles NE Latitude/Longitude: 38.78633/-76.65512

Land Use Analysis:

Land Use	Acres	% Area
Commercial	1.9	0.4
Open Space	25.8	5.9
Pasture/Hay	28.1	6.4
Residential 1/2- acre	16.8	3.8
Residential 1- acre	22.0	5.0
Residential 2- acre	10.0	2.3
Row Crops	97.9	22.2
Transportation	7.9	1.8
Woods	230.1	52.2
Grand Total	440.5	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
10.3	440.5	2.3

Results:

- Biological condition "Very Poor"
- Habitat scores were "Partially Supporting" and incomplete
- In general, the habitat features are marginal, with one bank showing disruptive pressure.
- Biological conditions were generally impaired in comparison to observed habitat levels.
- Sample is heavily dominated by worms (*Nais*) and midges (*Orthocladius/Cricotopus* and *Diplocladius*)
- Stream type was identified as an G5c, slope was 0.474 percent, and the median channel substrate was medium sand
- Typically, G channels are not stable. This channel has poor bank conditions on one bank, may be vulnerable to erosion

- Protect the riparian area.
- Plan for hydrologic stability with potential increases in imperviousness.
- Restore habitat features on the right bank, if feasible
- Determine need, feasibility of stormwater management on agricultural lands upstream of sites

Cabin Branch Sampling Unit

3

103 PS

11

154

9

IBI and Metric Scores	
Narrative Rating	Very Poor
Overall Index	1.57
Total Taxa Score	3
EPT Taxa Score	1
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	1
Ephemeroptera % Score	1
Scraper Taxa Score	1
% Climbers	3
Calculated Metric Values	
Total Taxa	14
EPT Taxa	1
Ephemeroptera Taxa	0
Intolerant Urban %	4.9
Ephemeroptera %	0
Scraper Taxa	0
% Climbers	4.9
Taxa List	
Stenelmis	1
Neophylax	1
Tanytarsus	5
Stegopterna	3
Pseudolimnophila	1
Orthocladius/Cricotopus	15
Limnodrilus	1
Diplocladius	24
Dero	2
Culicoides	2
Chaetocladius	4
Enchytraeidae	2
Agabus	1
Nais	40

8	Pool Variability
3	Riparian Vegetative Zone Width- Left Bank
20	Zone Width- Right Bank
13	Sediment Deposition
6	Vegetative Protection (Left Bank)
11	Vegetative Protection (Right Bank)
8	
	EPA Habitat Score
	EPA Narrative Ranking
n Survey l	РНІ
440.5	Instream Wood Debris
8	Bank Stability
70	
6	PHI Score (INCOMPLETE)
11	PHI Narrative Ranking
67	Specific Conductance (uS/cm)
	8 3 20 13 6 11 8 A Survey 440.5 8 70 6 11

Geomorphic Assessments

Physical Habitat

Rosgen Level II Classification Data

6.5

Drainage Area (mi²) Bankfull Width (ft) Mean Bankfull Depth (ft) Floodprone Width (ft) Entrenchment Ratio Width to Depth Ratio

Temperature (°C)

*Estimated

pН

Total Individuals

Cabin Branch Sampling Unit

Location/Site Access: MISSING INFORMATION Latitude/Longitude: 38.78706-76.65057

Land Use Analysis:

Land Use	Acres	% Area
Commercial	3.1	0.2
Open Space	20.6	1.6
Pasture/Hay	189.6	14.3
Residential 1/2- acre	71.1	5.4
Residential 1- acre	117.7	8.9
Residential 2- acre	92.5	7.0
Row Crops	347.6	26.2
Transportation	22.2	1.7
Water	1.7	0.1
Woods	462.4	34.8
Grand Total	1328.6	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
49.2	1328.6	3.7

Results:

- Biological condition "Poor"
- Habitat scores "Partially Supporting" and "Partially Degraded"
- Biological community is appropriate for observed habitat quality.
- Most habitat features show some sign of degradation
- Sample is heavily dominated by midges (*Orthocladius/Cricotopus*, *Diplocladius* and *Hydrobaenus*)
- Stream type was identified as an G5c, slope was 0.405 percent, and the median channel substrate was medium sand
- Typically, G channels are not stable. This channel has sub-optimal and poor bank and substrate conditions, and is vulnerable to further erosion

- Protect the riparian area.
- Plan for hydrologic stability with potential increases in imperviousness.
- Examine need for stormwater management on residential, agricultural lands, if feasible.

Cabin Branch Sampling Unit

IBI and Metric Scores	
Narrative Rating	Poor
Overall Index	2.14
Total Taxa Score	3
EPT Taxa Score	3
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	3
Ephemeroptera % Score	1
Scraper Taxa Score	1
% Climbers	3
Calculated Metric Values	0
Total Taxa	20
FDT Taxa	20
En la	2
Intelement Urban 0/	165
Enhomerentere %	10.5
Ephemeroptera %	0
	0
% Climbers	1.94
Taxa List	
Tubificinae	l F
Amphinomura	5
Deremetricenemus	1
Polynedilum	1
Prosimulium	4
Simuliidae	
Zavrelimvia	2
Nemata	1
Stegopterna	2
Enchytraeidae	1
Nais	4
Limnodrilus	1
Hydrobaenus	14
Hexatoma	1
Eukiefferiella	7
Diplocladius	23
Chrysops	2
Nanocladius	1
Orthocladius/Cricotopus	27

<u>Physical Habitat</u> EPA Rapid Bioassessment	
Bank Stability- Left Bank	5
Bank Stability- Right Bank	6
Channel Alteration	20
Channel Flow Status	9
Channel Sinuosity	8
Epifaunal Substrate/Available Cover	11
Pool Substrate Characterization	8

EPA Narrative Ranking	PS
EPA Habitat Score	107
Vegetative Protection (Right Bank)	6
	5
Vegetative Protection (Left Bank)	5
Sediment Deposition	5
Zone Width- Right Bank	10
Riparian Vegetative	
Zone Width- Left Bank	5
Riparian Vegetative	
Pool Variability	9

Maryland Biological Stream Survey PHI

Drainage area (acres)	1328.6	Instream Wood Debris	14
Remoteness	5	Bank Stability	11
Shading	85		
Epifaunal Substrate	6	PHI Score	63.28
Instream Habitat	11	PHI Narrative Ranking	D
Water Chemistry			
Dissolved Oxygen (mg/L)	13.1	Specific Conductance (μ S/cm)	181
рН	6.83	Temperature (°C)	12.88

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi ²)	2.1	Cross Sectional Area (ft ²)	30.2
Bankfull Width (ft)	14.1	Water Surface Slope (%)	0.405
Mean Bankfull Depth (ft)	2.2	Sinuosity	1.5
Floodprone Width (ft)	20.0	D50 (mm)	0.3
Entrenchment Ratio	1.4	Adjustments?	None
Width to Depth Ratio	6.4	Rosgen Stream Type	G5c
*Estimated			

Cabin Branch Sampling Unit

Location/Site Access: MISSING INFORMATION Latitude/Longitude: 38.7879/-76.65064

Land Use Analysis:

Land Use	Acres	% Area
Commercial	3.1	0.2
Open Space	20.6	1.6
Pasture/Hay	189.6	14.3
Residential 1/2- acre	71.1	5.4
Residential 1- acre	117.7	8.9
Residential 2- acre	91.3	6.9
Row Crops	347.6	26.2
Transportation	22.2	1.7
Water	1.7	0.1
Woods	462.2	34.8
Grand Total	1327.3	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
1327.3	49.1	3.7

Results:

- Biological condition "Poor"
- Habitat scores "Partially Supporting" and "Degraded"
- Biological community is appropriate for observed habitat quality.
- All habitat features (except channel alteration) show signs of degradation
- Sample is heavily dominated by midges (*Diplocladius* and *Orthocladius/Cricotopus*)
- Stream type was identified as an G5c, slope was 0.361 percent, and the median channel substrate was fine or medium sand
- Typically, G channels are not stable. This channel is apparently vulnerable to continued erosion

- Protect the riparian area.
- Plan for hydrologic stability with potential increases in imperviousness.
- Restore habitat stability and diversity, if feasible
- Examine need, feasibility of stormwater management on residential and agricultural lands upstream of site.

Cabin Branch Sampling Unit

Poor
2.14
3
5
1
1
1
1
3
19
5
0
9.9
0
0
1.98
$ \begin{array}{c} 1\\ 1\\ 2\\ 5\\ 1\\ 32\\ 1\\ 1\\ 1\\ 1\\ 1\\ 2\\ 33\\ 6\\ 4\\ 1\\ 2\\ 5\\ \end{array} $

EPA Rapid Bioassessmen	t		
Bank Stability- Left Bank	5	Pool Variability	7
Bank Stability- Right Bank	4	Riparian Vegetative Zone Width- Left Bank	2
Channel Alteration	20	Riparian Vegetative Zone Width- Right Bank	ç
Channel Flow Status	10	Sediment Deposition	6
Channel Sinuosity	10	Vegetative Protection (Left Bank)	5
Epifaunal Substrate/Available Co	ver 12	Vegetative Protection (Right Bank)	2
Pool Substrate Characterization	8		
		EPA Habitat Score	104
Maryland Biological Stre	am Survey	EPA Narrative Ranking PHI	PS
Maryland Biological Stre	am Survey	EPA Narrative Ranking PHI	PS
Maryland Biological Stree Drainage area (acres)	am Survey 1327.3	EPA Narrative Ranking PHI Instream Wood Debris Bank Stability	PS 7
Maryland Biological Strea Drainage area (acres) Remoteness	am Survey 1327.3 8	EPA Narrative Ranking PHI Instream Wood Debris Bank Stability	PS 7
Maryland Biological Stre Drainage area (acres) Remoteness Shading Epifaunal Substrate	am Survey 1327.3 8 85	EPA Narrative Ranking PHI Instream Wood Debris Bank Stability PHI Score	PS
Maryland Biological Strea Drainage area (acres) Remoteness Shading Epifaunal Substrate nstream Habitat	am Survey 1327.3 8 85 6 12	EPA Narrative Ranking PHI Instream Wood Debris Bank Stability PHI Score PHI Narrative Ranking	PS 7 9 62.27
Maryland Biological Stre Drainage area (acres) Remoteness Shading Epifaunal Substrate nstream Habitat	am Survey 1327.3 8 85 6 12	EPA Narrative Ranking PHI Instream Wood Debris Bank Stability PHI Score PHI Narrative Ranking	PS 7 9 62.27 E
Maryland Biological Stree Drainage area (acres) Remoteness Shading Epifaunal Substrate Instream Habitat Water Chemistry	am Survey 1327.3 8 85 6 12	EPA Narrative Ranking PHI Instream Wood Debris Bank Stability PHI Score PHI Narrative Ranking	PS
Maryland Biological Strea Drainage area (acres) Remoteness Shading Epifaunal Substrate Instream Habitat Water Chemistry Dissolved Oxygen (mg/L)	am Survey 1327.3 8 85 6 12 11.39	EPA Narrative Ranking PHI Instream Wood Debris Bank Stability PHI Score PHI Narrative Ranking Specific Conductance (µS/cm)	PS 7 9 62.27 0 187

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi ²)
Bankfull Width (ft)
Mean Bankfull Depth (ft)
Floodprone Width (ft)
Entrenchment Ratio
Width to Depth Ratio

*Estimated

Total Individuals

Cabin Branch Sampling Unit

Location/Site Access: Located at Orchard Latitude/Longitude: 38.76291-76.68264

Land Use Analysis:

Land Use	Acres	% Area
Commercial	0.6	0.1
Open Space	19.4	2.3
Pasture/Hay	83.6	9.9
Residential 1/2-	23.0	28
acre	23.9	2.0
Residential 1-	52.9	63
acre	52.7	0.5
Residential 2-	32.6	39
acre	52.0	5.7
Row Crops	143.0	17.0
Transportation	38.2	4.5
Woods	448.4	53.2
Grand Total	842.7	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
842.7	34.6	4.1

Results:

- Biological condition "Poor"
- Habitat scores "Partially Supporting" and "Partially Degraded"
- Biological community observed is trending toward more than expected impairment based on the observed habitat quality.
- Riparian features are intact, but bank features are sub-optimal and sediment deposition is marginal
- Sample is heavily dominated by midges (*Hydrobaenus*, *Diplocladius*, and *Orthocladius/Cricotopus*) and blackflies (*Simulium*)
- Stream type was identified as an G5c, slope was 0.624 percent, and the median channel substrate was medium sand
- Typically, G channels are not stable and this channel has is vulnerable to erosion on both banks

- Maintain protection of the riparian area.
- Plan for hydrologic stability with potential increases in imperviousness.
- Restore habitat stability and diversity, if feasible
- Investigate need for stormwater management on residential, agricultural lands upstream.

Cabin Branch Sampling Unit

IBI and Metric Scores	
Narrative Rating	Poor
Overall Index	2.43
Total Taxa Score	5
EPT Taxa Score	3
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	3
Ephemeroptera % Score	1
Scraper Taxa Score	1
% Climbers	3
Calculated Metric Values	-
Total Taxa	23
	3
Er Franze Enhemeroptera Taxa	0
Intelerant Urban %	18.63
Ephemeroptera %	18.05
Scraper Taxa	0
% Climbor	2.04
Town List	2.94
Tubificinae	1
Parametriocnemus	2
Polypedilum	3
Prosimulium	4
Rheocricotopus	1
Simuliidae	7
Hydroporinae	1
Stegopterna	2
Orthocladius/Cricotopus	10
Nemata	1
Simulium	17
Diplocladius	14
Amphinemura	7
Orthocladius	1
Cnrysops Eulriofforialla	1
Hevetoma	1
Hydrobaenus	19
Isoperla	1
Limnodrilus	1
Nais	3
Neophylax	2
Ancyronyx	1

L HJURCHI HAUTHU			
EPA Rapid Bioassessment			
Bank Stability- Left Bank	6	Pool Variability	9
Bank Stability- Right Bank	5	Riparian Vegetative Zone Width- Left Bank	10
Channel Alteration	20	Riparian Vegetative Zone Width- Right Bank	10
Channel Flow Status	12	Sediment Deposition	6
Channel Sinuosity	6	Vegetative Protection (Left Bank)	6
Epifaunal Substrate/Available Cover	14	Vegetative Protection (Right Bank)	5
Pool Substrate Characterization	9		
		EPA Habitat Score	118
		EPA Narrative Ranking	PS
Drainage area (acres)	842.7	Instream Wood Debris	16
Drainage area (acres)	842 7	Instream Wood Debris	16
Remoteness	8	Bank Stability	11
Shading	100		
-			
Epifaunal Substrate	9	PHI Score	77.34
Epifaunal Substrate Instream Habitat	9 14	PHI Score PHI Narrative Ranking	77.34 PD
Epifaunal Substrate Instream Habitat Water Chemistry	9 14	PHI Score PHI Narrative Ranking	77.34 PD
Epifaunal Substrate Instream Habitat Water Chemistry Dissolved Oxygen (mg/L)	9 14 7.68	PHI Score PHI Narrative Ranking Specific Conductance (µS/cm)	77.34 PD 210

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi²) Bankfull Width (ft) Mean Bankfull Depth (ft) Floodprone Width (ft) Entrenchment Ratio Width to Depth Ratio

*Estimated

Total Individuals
Cabin Branch Sampling Unit

Location/Site Access: Located at 5727 Courtney Lane Latitude/Longitude: 38.78733/-76.67767

Land Use Analysis:

Land Use	Acres	% Area
Pasture/Hay	2.2	5.4
Residential 1/2-		
acre	3.5	8.3
Residential 2-		
acre	1.3	3.1
Row Crops	7.6	18.1
Woods	27.2	65.1
Grand Total	41.7	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
0.55	41.7	1.3

Results:

- Biological condition "Very Poor"
- Habitat scores "Non Supporting" and "Partially Degraded"
- Habitat assessment results were mixed for this site, but biological community observed is trending toward more than expected impairment based on the observed habitat quality.
- Riparian features are intact, but bank, pool, and substrate features are marginal
- Sample is heavily dominated by midges (*Chaetocladius* and *Diplocladius*)
- Stream type was identified as an G5c, slope was 1.45 percent, and the median channel substrate was estimated as fine or medium sand
- This channel has poor bank conditions, and may be unstable. However, it has a small catchment and low imperviousness; factors that suggest low vulnerability to excessive hydrologic channel erosion.

- Maintain protection of the riparian area.
- Plan for hydrologic stability with potential increases in imperviousness.
- Determine need, feasibility of stormwater management on residential and agricultural lands upstream.

23-07

Cabin Branch Sampling Unit

IBI and Metric Scores	
Narrative Rating	Very Poor
Overall Index	1.86
Total Taxa Score	3
EPT Taxa Score	3
Ephemeroptera Taxa Score	1
Intolerant Urban % Score	1
Ephemeroptera % Score	1
Scraper Taxa Score	1
% Climbers	3
Calculated Metric Values	
Total Taxa	20
EPT Taxa	2
Ephemeroptera Taxa	0
Intolerant Urban %	3.96
Ephemeroptera %	0
Scraper Taxa	0
% Climbers	0.99
Tava List	
Rheocricotopus	2
Neophylax	1
Musculium/Sphaerium	1
Hydroporinae	1
Bezzia/Palpomvia	1
Veliidae	1
Tanytarsus	1
Pisidiidae	6 47
Caecidotea	3
Enchytraeidae	1
Limnodrilus	5
Krenopelopia Ironoguia	1
Diplocladius	22
Culicoides	2
Corynoneura	1
Orthocladius/Cricotopus Pristina	1
Tistila	1

Physical Habitat			
EPA Rapid Bioassessment			
Bank Stability- Left Bank	4	Pool Variability	4
Bank Stability- Right Bank	5	Riparian Vegetative Zone Width- Left Bank	1(
Channel Alteration	20	Zone Width- Right Bank	10
Channel Flow Status	8	Sediment Deposition	ç
Channel Sinuosity	5	Vegetative Protection (Left Bank)	4
Epifaunal Substrate/Available Cover	5	Vegetative Protection (Right Bank)	4
Pool Substrate Characterization	6		
		EPA Habitat Score	95
		EPA Narrative Ranking	NS
Maryland Biological Stream	Survey	PHI	
Drainage area (acres)	41.7	Instream Wood Debris	ç
Drainage area (acres) Remoteness	41.7 8	Instream Wood Debris Bank Stability	ç
Drainage area (acres) Remoteness Shading	41.7 8 100	Instream Wood Debris Bank Stability	ç
Drainage area (acres) Remoteness Shading Epifaunal Substrate	41.7 8 100 3	Instream Wood Debris Bank Stability PHI Score	9 9 71.63
Drainage area (acres) Remoteness Shading Epifaunal Substrate Instream Habitat	41.7 8 100 3 5	Instream Wood Debris Bank Stability PHI Score PHI Narrative Ranking	9 9 71.63 PE
Drainage area (acres) Remoteness Shading Epifaunal Substrate Instream Habitat Water Chemistry	41.7 8 100 3 5	Instream Wood Debris Bank Stability PHI Score PHI Narrative Ranking	9 9 71.63 PE
Drainage area (acres) Remoteness Shading Epifaunal Substrate Instream Habitat Water Chemistry Dissolved Oxygen (mg/L)	41.7 8 100 3 5	Instream Wood Debris Bank Stability PHI Score PHI Narrative Ranking Specific Conductance (µS/cm)	9 9 71.63 PD 102

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi ²)
Bankfull Width (ft)
Mean Bankfull Depth (ft)
Floodprone Width (ft)
Entrenchment Ratio
Width to Depth Ratio

	_	
0.065	Cross Sectional Area (ft ²)	8.8
7.6	Water Surface Slope (%)	1.45
1.2	Sinuosity	1.1
11.8	D50 (mm)	0.25*
1.6	Adjustments?	↓ER
6.5	Rosgen Stream Type	G5c

*Estimated

Total Individuals

101

Cabin Branch Sampling Unit

Location/Site Access: formerly Talbot Road Crossing Latitude/Longitude: 38.7744/-76.65144

Land Use Analysis:

Land Use	Acres	% Area
Commercial	5.0	0.2
Open Space	57.5	2.5
Pasture/Hay	242.9	10.5
Residential 1/2-		
acre	122.3	5.3
Residential 1-		
acre	162.2	7.0
Residential 2-		
acre	142.7	6.2
Row Crops	565.8	24.5
Transportation	33.8	1.5
Water	1.7	0.1
Woods	971.2	42.1
Grand Total	2305.2	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
76.7	2305.2	3.3

Results:

- Biological condition "Poor"
- Habitat scores "Partially Supporting" and "Partially Degraded"
- Biological community observed is trending toward more than expected impairment based on the observed habitat quality.
- All habitat features show some signs of degradation, particularly sediment deposition
- Sample is heavily dominated by midges (*Orthocladius/Cricotopus*, *Diplocladius*, and Hydrobaenus) and worms (*Nais*)
- Stream type was identified as an E5, slope was 0.188 percent, and the median channel substrate was medium sand
- Bank and substrate conditions in this channel indicate apparent instability

- Protect the riparian area.
- Plan for hydrologic stability with potential increases in imperviousness.
- Investigate need, feasibility of stormwater management on agricultural, residential lands upstream of site.

23-09

Cabin Branch Sampling Unit

IBI and Metric Scores	
Narrative Rating	Poor
Overall Index	2.43
Total Taxa Score	3
EPT Taxa Score	1
Ephemeroptera Taxa Score	3
Intolerant Urban % Score	1
Ephemeroptera % Score	3
Scraper Taxa Score	3
% Climbers	3
Calculated Metric Values	
Total Taxa	20
EPT Taxa	1
Ephemeroptera Taxa	1
Intolerant Urban %	1.68
Ephemeroptera %	0.84
Scraper Taxa	1
% Climbers	1.68
Taxa List	
Orthocladius/Cricotopus	27
Prosimulium	1
Simulium	3
Stictochironomus	4
Tubificinae	3
Menetus	1
Thienemannimyia genus group	2
Nais	24
Hydroporinae En shattas side s	1
Balymadilum	1
Limpodrilus	2
Destides	2
Corumonouro	1
Culiacidas	1
Diplocladius	22
Fukiefferiella	1
Gammarus	3
Hydrobaenus	18
Ablabesmyia	1
J ···	

<u>Physical Habitat</u>	
EPA Rapid Bioassessment	
Bank Stability- Left Bank	

··· ··· ··· ··	-
Bank Stability- Right Bank	6
Channel Alteration	13
Channel Flow Status	11
Channel Sinuosity	6
Epifaunal Substrate/Available Cover	14
Pool Substrate Characterization	9

EPA Narrative Ranking	PS
EPA Habitat Score	104
Vegetative Protection (Right Bank)	6
vegetative Protection (Left Bank)	4
Sediment Deposition	6
Zone Width- Right Bank	8
Riparian Vegetative	0
Zone Width- Left Bank	8
Riparian Vegetative	
Pool Variability	9

Maryland Biological Stream Survey PHI

Drainage area (acres)	2305.2	Instream Wood Debris	10
Remoteness	10	Bank Stability	10
Shading	85		
Epifaunal Substrate	9	PHI Score	68.32
Instream Habitat	14	PHI Narrative Ranking	PD
Water Chemistry			
Dissolved Oxygen (mg/L)	13.28	Specific Conductance (µS/cm)	154
pH	6.78	Temperature (°C)	9.54

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi²) Bankfull Width (ft) Mean Bankfull Depth (ft) Floodprone Width (ft) Entrenchment Ratio Width to Depth Ratio

3.0	Cross Sectional Area (ft ²)	30.6
13.1	Water Surface Slope (%)	0.188
2.3	Sinuosity	1.0
30	D50 (mm)	0.36
2.3	Adjustments?	↓ER
5.6	Rosgen Stream Type	E5

*Estimated

Total Individuals

Cabin Branch Sampling Unit

Location/Site Access: Located at 6207 Mallard Court, 0.17 miles East Latitude/Longitude: 38.75679-76.66938

Land Use Analysis:

Land Has	A	0/ 1
Land Use	Acres	% Area
Commercial	90.0	1.0
Industrial	8.4	0.1
Open Space	412.4	4.5
Open Wetland	4.0	0.0
Pasture/Hay	745.9	8.1
Residential 1-acre	681.5	7.4
Residential 1/8-acre	57.7	0.6
Residential 1-acre	655.3	7.1
Residential 2-acre	245.2	3.7
Row Crops	2097.5	22.7
Transportation	197.2	2.1
Water	9.1	0.1
Woods	3928.7	42.6
Unknown	1574.5	17.1
Grand Total	9232.8*	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
464.3	9232.8*	5.0

* Land use statistics are based on the portion of the catchment that lies within Anne Arundel County

Results:

- Biological condition "Poor"
- Habitat scores "Supporting" and "Degraded"
- Habitat assessment results were mixed for this site, but biological community observed is trending toward more than expected impairment based on the observed habitat quality.
- Substrate features received the worst ratings in both habitat assessments.
- Sample is heavily dominated by worms (*Tubificinae*) and various midges
- No cross sectional profile was done due to depth, turbidity and beaver modifications.

- Maintain protection of the riparian area.
- Plan for hydrologic stability with potential increases in imperviousness.
- Determine need, feasibility of stormwater management on developed and agricultural lands, coordinating with Calvert County as necessary.

23-10

Cabin Branch Sampling Unit

Narrative RatingOverall IndexTotal Taxa ScoreEPT Taxa ScoreEphemeroptera Taxa ScoreIntolerant Urban % ScoreEphemeroptera % ScoreScraper Taxa Score% ClimbersCalculated Metric ValuesTotal TaxaEPT TaxaEphemeroptera TaxaIntolerant Urban %Ephemeroptera TaxaØ ClimbersTotal TaxaEPT TaxaEphemeroptera TaxaIntolerant Urban %Ephemeroptera %Scraper Taxa% ClimbersTaxa ListOrthocladius/CricotopusProcladiusParatanytarsusParatendipesPhaenopsectra	Poor 2.14 5 1 1 1 1 1 1 5 26 0 0 9.26 0
Overall IndexTotal Taxa ScoreEPT Taxa ScoreEphemeroptera Taxa ScoreIntolerant Urban % ScoreScraper Taxa Score% ClimbersCalculated Metric ValuesTotal TaxaEPT TaxaEphemeroptera TaxaIntolerant Urban %Scraper Taxa Score% ClimbersData TaxaEPT TaxaEphemeroptera TaxaIntolerant Urban %Ephemeroptera %Scraper Taxa% ClimbersTaxa ListOrthocladius/CricotopusProcladiusParatanytarsusParatendipesPhaenopsectra	2.14 5 1 1 1 1 1 5 26 0 0 9.26 0
Total Taxa Score EPT Taxa Score Ephemeroptera Taxa Score Intolerant Urban % Score Ephemeroptera % Score Scraper Taxa Score % Climbers Calculated Metric Values Total Taxa EPT Taxa EPT Taxa Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Orthocladius/Cricotopus Procladius Paratanytarsus Paratendipes Phaenopsectra	5 1 1 1 1 1 5 26 0 0 9.26 0
EPT Taxa Score Ephemeroptera Taxa Score Intolerant Urban % Score Ephemeroptera % Score Scraper Taxa Score % Climbers Calculated Metric Values Total Taxa EPT Taxa EPT Taxa Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Orthocladius/Cricotopus Procladius Paratanytarsus Paratendipes Phaenopsectra	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 5 \\ \hline 26 \\ 0 \\ 9.26 \\ 0 \\ 0 \\ \end{array} $
Ephemeroptera Taxa Score Intolerant Urban % Score Ephemeroptera % Score Scraper Taxa Score % Climbers Calculated Metric Values Total Taxa EPT Taxa Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Orthocladius/Cricotopus Procladius Paratanytarsus Paratendipes Phaenopsectra	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 5 \\ \hline 26 \\ 0 \\ 9.26 \\ 0 \\ 0 \\ \end{array} $
Intolerant Urban % Score Ephemeroptera % Score Scraper Taxa Score % Climbers Calculated Metric Values Total Taxa EPT Taxa Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Orthocladius/Cricotopus Procladius Paratanytarsus Paratendipes Phaenopsectra	1 1 5 26 0 0 9.26 0
Ephemeroptera % Score Scraper Taxa Score % Climbers Calculated Metric Values Total Taxa EPT Taxa Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Orthocladius/Cricotopus Procladius Paratanytarsus Paratendipes Phaenopsectra	1 1 5 26 0 0 9.26 0
Scraper Taxa Score % Climbers Calculated Metric Values Total Taxa EPT Taxa Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Orthocladius/Cricotopus Procladius Paratanytarsus Paratendipes Phaenopsectra	1 5 26 0 0 9.26 0
% Climbers Calculated Metric Values Total Taxa EPT Taxa Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Orthocladius/Cricotopus Procladius Paratanytarsus Paratendipes Phaenopsectra	26 0 9.26 0
Calculated Metric Values Total Taxa EPT Taxa Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Orthocladius/Cricotopus Procladius Paratanytarsus Paratendipes Phaenopsectra	26 0 9.26 0
Carculated Metric VallesTotal TaxaEPT TaxaEphemeroptera TaxaIntolerant Urban %Ephemeroptera %Scraper Taxa% ClimbersTaxa ListOrthocladius/CricotopusProcladiusParatanytarsusParatendipesPhaenopsectra	26 0 9.26 0
EPT Taxa Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Orthocladius/Cricotopus Procladius Paratanytarsus Paratendipes Phaenopsectra	26 0 9.26 0
EPT Taxa Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Orthocladius/Cricotopus Procladius Paratanytarsus Paratendipes Phaenopsectra	0 0 9.26 0
Ephemeroptera Taxa Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Orthocladius/Cricotopus Procladius Paratanytarsus Paratendipes Phaenopsectra	0 9.26 0
Intolerant Urban % Ephemeroptera % Scraper Taxa % Climbers Taxa List Orthocladius/Cricotopus Procladius Paratanytarsus Paratendipes Phaenopsectra	9.26 0
Ephemeroptera % Scraper Taxa % Climbers Taxa List Orthocladius/Cricotopus Procladius Paratanytarsus Paratendipes Phaenopsectra	0
Scraper Taxa % Climbers Taxa List Orthocladius/Cricotopus Procladius Paratanytarsus Paratendipes Phaenopsectra	0
% Climbers Taxa List Orthocladius/Cricotopus Procladius Paratanytarsus Paratendipes Phaenopsectra	0
Taxa List Orthocladius/Cricotopus Procladius Paratanytarsus Paratendipes Phaenopsectra	9.26
Orthocladius/Cricotopus Procladius Paratanytarsus Paratendipes Phaenopsectra	
Procladius Paratanytarsus Paratendipes Phaenopsectra	2
Paratanytarsus Paratendipes Phaenopsectra	1
Paratendipes Phaenopsectra	1
Phaenopsectra	1
D I I'I	3
Polypedilum	8
Simulum	2 1
Spineronnas Stanoshironomus	1
Topytorsus	1
Quistradrilus	2
Hydrobiidae	1
Tubificinae	38
Ceratopogon	1
Limnodrilus	3
Nais	5
Endochironomus	2
Cladopelma	6
Cryptotendipes	1
Culicoides	6
Dicrotendipes	3
Dubiraphia	1
Gammarus	4
Caecidotea	8
Ilyodrilus	5
Ancyronyx	1
Απογιοπγχ	1

Total Individuals	Fotal	ividuals
-------------------	-------	----------

<u>Physical Habitat</u>			
EPA Rapid Bioassessment			
Bank Stability- Left Bank	9	Pool Variability	13
Bank Stability- Right Bank	9	Riparian Vegetative Zone Width- Left Bank	10
Channel Alteration	20	Zone Width- Right Bank	10
Channel Flow Status	18	Sediment Deposition	7
Channel Sinuosity	5	Vegetative Protection (Left Bank)	9
Epifaunal Substrate/Available Cover	16	Vegetative Protection (Right Bank)	9
Pool Substrate Characterization	13		
		EPA Habitat Score	148
		EPA Narrative Ranking	S
Maryland Biological Stream	Survey P	HI	
Drainage area (acres)	10807.3	Instream Wood Debris	13
Remoteness	14	Bank Stability	18
Shading	20		
Epifaunal Substrate	6	PHI Score	58.58
Instream Habitat	16	PHI Narrative Ranking	D
Water Chemistry			
Dissolved Oxygen (mg/L)	9.04	Specific Conductance (µS/cm)	173
рН	6.7	Temperature (°C)	9.51

Geomorphic Assessments

Geomorphic analysis was not completed at this site due to water depth, turbidity, and beaver modifications.

23-13A

Cabin Branch Sampling Unit

Location/Site Access: Located at Pindell Bluff Trail 0.3 miles S/SW to site Latitude/Longitude: 38.77251/-76.69601

Land Use Analysis:

Land Use	Acres	% Area
Open Space	1.3	0.3
Pasture/Hay	6.6	1.5
Residential 1/2-		
acre	3.2	0.7
Residential 1-		
acre	2.5	0.6
Residential 2-		
acre	38.4	8.8
Row Crops	99.0	22.7
Transportation	9.0	2.1
Woods	275.3	63.3
Grand Total	435.2	100.0

Impervious	Total Area	%
(acres)	Above site	Impervious
8.6	435.2	2.0

Results:

- Biological condition "Fair"
- Habitat scores "Supporting" and "Partially Degraded"
- Biological health matches observed habitat quality.
- Riparian and bank features are largely intact, but substrate features are marginal
- Sample is diverse, but dominated by midges (*Polypedilum*) and amphipods (*Gammarus*)
- Stream type was identified as an E5, slope was 0.067 percent, and the median channel substrate was fine sand
- This channel has sub-optimal bank conditions, but predominantly fine sediments and marginal pool conditions

- Maintain protection of the riparian area.
- Plan for hydrologic stability with potential increases in imperviousness.
- Investigate sources of deposited sediments
- Investigate need, feasibility of stormwater management BMP installation to protect current high quality biological community.

23-13A

Cabin Branch Sampling Unit

9

10

10

9

7

7

128 S

IBI and Metric Scores	
Narrative Rating	Fair
Overall Index	3.29
Total Taxa Score	5
EPT Taxa Score	3
Ephemeroptera Taxa Score	3
Intolerant Urban % Score	1
Ephemeroptera % Score	3
Scraper Taxa Score	3
% Climbers	5
Calculated Metric values	29
EPT Taxa	30
Ephemeroptera Taxa	1
Intolerant Urban %	8.74
Ephemeroptera %	0.97
Scraper Taxa	1
% Climbers	20.39
Taxa List	~
Zavrelimyia	2
Orthocladius/Cricotopus	1
Paraphaenocladius	1
Paratendipes	4
Polypedilum	20
Pristina	1
Pseudorthocladius	4
Orthocladius	4
Rheosmittia	1
Pisidiidae Stempellinella	1
Orthocladiinae	1
Tvetenia	2
Pseudosmittia	2
Bezzia/Palpomyia	2
Thienemannimyia genus group	1
Synurella	1
Ceratopogon	1
Ormosia	1
Acerpenna	1
Amphinemura	2
Enchytraeidae	2
Chrysops	1
Corynoneura	1
Culicoides	1
Dintera	1
Ferrissia	1
Gammarus	20
Haploperla	1
Hexatoma	1
Hydrobaenus	3
Dipiocladius	2
rvars Caecidotea	2 1
Limnophyes	3
	-
Total Individuals	103

<u>Physical Habitat</u> EPA Rapid Bioassessment		
Bank Stability- Left Bank	8	Pool Variability
Bank Stability- Right Bank	8	Riparian Vegetative Zone Width- Left Bank
Channel Alteration	20	Riparian Vegetative Zone Width- Right Bank
Channel Flow Status	16	Sediment Deposition
Channel Sinuosity	10	Vegetative Protection (Left Bank)
Epifaunal Substrate/Available Cover	7	Vegetative Protection (Right Bank)
Pool Substrate Characterization	7	
		EPA Habitat Score
		EPA Narrative Ranking

Maryland Biological Stream Survey PHI

•	0	•		
Drainage area (a	cres)	435.2	Instream Wood Debris	3
Remoteness		14	Bank Stability	18
Shading		95		
Epifaunal Subst	rate	3	PHI Score	71.553
Instream Habita	t	7	PHI Narrative Ranking	PD
Water Ch Dissolved Oxyg	emistry en (mg/L)	11.67	Specific Conductance (µS/cm)	97
pН		7.01	Temperature (°C)	9.15

Geomorphic Assessments

Rosgen Level II Classification Data

Drainage Area (mi ²)	0.6
Bankfull Width (ft)	9.
Mean Bankfull Depth (ft)	1.
Floodprone Width (ft)	30
Entrenchment Ratio	37.
Width to Depth Ratio	6.

.5	Rosgen Stream Type	E5
.5*	Adjustments?	↑Sin
0*	D50 (mm)	0.22
.2	Sinuosity	1.3
.8	Water Surface Slope (%)	0.067
580	Cross Sectional Area (ft ²)	9.8

*Estimated

