WATER
OUR MOST PRECIOUS RESOURCE
USE IT WISELY!
GET STARTED NOW!

- Use sprinklers that deliver big drops of water close to the ground. Smaller drops and mist often evaporate before hitting the ground.
- For hanging baskets, planters and pots, put ice cubes on top of the soil to give your plants a cool drink of water without overflow.
- Wash your fruits and vegetables in a pan of water instead of running water from the tap.
- Shorten your shower by a minute or two and you’ll save up to 150 gallons per month.

SAVE WATER
ONE DROP AT A TIME!

2016 Drinking Water Quality

Anne Arundel County Department of Public Works’ Bureau of Utility Operations is proud to present the 2016 Drinking Water Quality Report. In this report you will find information about the sources, treatment, and delivery of your drinking water. Additionally, this report contains important information about the quality of your drinking water. Inside you will find the results of water quality analyses performed throughout the year.

In 2016 Anne Arundel County collected 19,051 water samples and approximately 41,000 water quality analyses were performed. No water quality violations were found.

Anne Arundel County is committed to providing its citizens with drinking water that meets or exceeds all state and federal drinking water standards. As these standards and regulations evolve, we have strived to adopt new and better methods to deliver the best quality drinking water in the most cost-effective manner. We encourage you to take the time to read this report to learn more about the quality of your drinking water.
The County’s public water system is divided into 8 water service areas, as is illustrated in the map inside of this report. All of the service areas receive drinking water produced at County water treatment facilities. Two of the service areas also receive drinking water that is purchased by the County from Baltimore City. The City facilities use surface water from reservoirs as a supply source. The County facilities only use ground water from wells as a supply source. Like the majority of the water utilities in the United States, Anne Arundel County uses a multi-step treatment process to ensure that the water delivered to our citizens is of the highest quality. Below is a brief description of the various steps in the water treatment process:

Wells
Water is taken from underground wells (150-1,550 ft deep) in the Patapsco, Patuxent, and Aquia aquifers.

Aeration
Once removed from the ground, water is then passed through large aerators to add oxygen and remove dissolved gasses.

Chemical Addition
Chemicals such as chlorine and lime are added to adjust the pH and to disinfect the water.

Coagulation, Flocculation, Sedimentation
These processes remove solid particles such as iron.

Filtration
Filtration further removes suspended matter by passing the water through filter media.

Fluoride Addition
Fluoride is added to the water to aid in the prevention of tooth decay.

Distribution
After undergoing the treatment process, finished water enters the distribution system. It is then delivered to over 112,000 homes and businesses throughout Anne Arundel County. The water distribution system is comprised of a network of over 1,400 miles of water mains. In addition to water mains, the distribution system consists of fire hydrants, valves, elevated storage tanks, and various other components that make it possible for the finished water to be delivered to the County’s homes and businesses.

Additional Water Storage for the Broad Creek WTP Service Area
The Broad Creek water treatment plant is located on Harry S. Truman Pkwy in Annapolis and provides drinking water to many surrounding communities such as Riva, Edgewater, Parole, Rolling Knolls, and Heritage Harbor.

The water supply demand in this service area continues to expand with the rapid growth and development seen in Anne Arundel County. In order to keep pace, the need for more drinking water storage is required to provide adequate pressure and ample storage of drinking water. The current storage capacity for the Broad Creek service area is 4.25 million gallons. With the addition of a new elevated water storage tank in the General’s Hwy area, the drinking water storage capacity will increase to 6.25 million gallons.

In January, 2015 construction began on the General’s Highway elevated storage tank, which is located on General’s Highway in Annapolis, near the Annapolis Mall. This tank is constructed of a composite cement pedestal and a welded steel watertight tank (bowl). With a capacity of 2 million gallons, and a constructed height of 140’ (228’ above sea level), this tank will yield increased water pressure and supply to this service area.

The construction is scheduled to be completed in spring of 2017 (and the storage tank will be in operation by the summer of 2017.) The next time you venture out, be sure to take a look at the newest water storage tank serving the citizens Anne Arundel County.
Important Information from the EPA

Radium is a naturally occurring substance which, if exposed to acidic conditions (low pH), can leach into groundwater. The EPA has set maximum contaminant levels for radium that are based on lifetime exposure. The County and State monitor the public water system. Some people, who drink water containing combined radium in excess of the MCL over many years, may have an increased risk of getting cancer. However, the risk is very small.

Radon is a naturally occurring radioactive gas that may cause cancer, and may be found in drinking water and indoor air. The EPA advises that some people who are exposed to radon in drinking water may have an increased risk of cancer over the course of their lifetime, especially lung cancer. Radon in soil under homes is the biggest source of radon in indoor air, and a greater risk of lung cancer than radon in drinking water. For more information, call EPA’s Radon Hotline (800-SOS-RADON) or visit www.epa.gov/radon. Testing has indicated that radon is not present in the public water system at concentrations which would cause any health concerns.

Cryptosporidium is a microscopic parasite that may cause diarrhea, fever and gastroenteric disorders. Cryptosporidium may be found in drinking water that comes from surface water, not from underground aquifers. Baltimore City uses reservoirs and monitors its raw water sources for cryptosporidium. Samples were analyzed and determined to be free of viable organisms. The City protects its’ reservoirs to prevent these organisms from entering the water supply.

Arsenic is a naturally occurring substance, which, if contained in drinking water, could increase the risk of serious health concerns such as circulatory problems. The current EPA level for this contaminant is 0.01 mg/l. Testing has indicated that there is no arsenic in the public water system.

Lead, when in elevated levels, can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials associated with service lines and home plumbing. The County is responsible for providing high quality drinking water, but cannot control the materials used in plumbing components. Testing shows that lead is not present in the public drinking water system at concentrations that would cause health concerns. Information on lead in drinking water, testing methods, and steps to minimize exposure is available from the EPA Safe Drinking Water Hotline at 1-800-426-4791 or at http://epa.gov/safewater/lead.

Source Water Assessment is a process for evaluating the vulnerability to contamination of the source of a public drinking water supply. The assessment does not address the treatment or distribution aspects of the water system, which are covered under separate provisions of the Safe Drinking Water Act. The Maryland Department of the Environment is the lead agency in developing these Assessments, which have been completed for all of the County’s water systems.

Drinking water, including bottled water, may reasonably be expected to contain small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline at 1-800-426-4791 or by visiting www.epa.gov/safewater.

Some people are more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as those with cancer, undergoing chemotherapy, those having undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline.

The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive materials, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

Microbial contaminants, such as viruses and bacteria, which may come from waste treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm runoff, industrial or domestic discharges, oil and gas production, mining or farming.

Pesticides & herbicides, come from a variety of sources such as agriculture, stormwater runoff and residential uses.

Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.

Radioactive contaminants, which can be naturally occurring or the result of oil and gas production and mining activities.
Information about your Water System

In addition to this annual report, information about your water system is provided in “Customer Updates” which are included in your utility bill, as well as comprehensive information on the Department of Public Works’ internet site at www.aacounty.org/dpw. Additional informational materials may be obtained from the Public Works’ Customer Relations staff by calling 410-222-7582.

All capital projects, which include improvements and/or additions to the water supply system, are included in the annual budget presented by the County Executive to the County Council each spring. Public hearings are held within the County and public comment is welcome.

The County also maintains a “Ten Year Master Plan for Water Supply and Sewage Systems”. The County Budget and Master Plan can be reviewed at any branch of the County library. For information on the Master Plan, contact the Long Range Planning Section, Office of Planning and Zoning at 410-222-7432.

Definitions of Terms Used in the Water Quality Data Table

Maximum Contaminant Level (MCL): Highest level of a contaminant allowed in drinking water. MCLs are set as close to MCLG’s as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG): Level of contaminant in drinking water below which there is no known or expected risk to health. MCLG’s allow for a margin of safety.

Action Level: Concentration of a contaminant which, if exceeded, triggers a treatment or other requirement which a water system must follow.

N/A: Not applicable

ND: Not detectable at testing limit

NT: Not tested

ppm: Parts per million or milligrams per liter. One part per million is the equivalent of 1 cent in $10,000 or one minute in two years.

ppb: Parts per billion or micrograms per liter. One part per billion is the equivalent of 1 cent in $10,000,000 or one minute in two thousand years.

pCi/l: Parts per trillion or picocuries per liter (a measure of radiation)

NTU: Nephelometric turbidity units (a measure of water clarity)

TT: Treatment technique, a required process intended to reduce the level of a contaminant in drinking water.

Anne Arundel County maintained approximately 1,400 miles of water mains in 2016!
Anne Arundel County Water Service Areas

Pasadena/Baltimore City # 1
Glen Burnie/Baltimore City # 2
Broadneck
Crofton/Odenton

Broad Creek
Gibson Island
Herald Harbor
Rose Haven

A Commitment to Excellence!
Microbiological Contaminants

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>MCL</th>
<th>MCLG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliforms</td>
<td>#</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td>0.11</td>
<td>100%</td>
</tr>
</tbody>
</table>

Typical Sources of Contamination
- Naturally present in the environment.
- Erosion and/or decay of natural deposits.
- Soil run-off.
- Erosion and/or decay of natural deposits; discharge of drilling wastes.
- Erosion and/or decay of natural deposits; discharge from metal refineries.
- Erosion and/or decay of natural deposits; discharge from fertilizer and aluminum factories.
- Erosion and/or decay of natural deposits; discharge from manufacturing industry.
- Erosion and/or decay of natural deposits; discharge from metal refineries.
- Erosion and/or decay of natural deposits; discharge from metal refineries.
- Erosion and/or decay of natural deposits; corrosion of household plumbing systems.
- Erosion and/or decay of natural deposits; discharge from metal refineries.
- Erosion and/or decay of natural deposits; discharge from metal refineries.
- Erosion and/or decay of natural deposits; discharge from metal refineries.
- Erosion and/or decay of natural deposits.

Radioactive Contaminants

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>MCL</th>
<th>MCLG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha Emitters</td>
<td>pCi/l</td>
<td>15</td>
<td>N/A</td>
</tr>
<tr>
<td>Combined Radium</td>
<td>pCi/l</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Typical Sources of Contamination
- Erosion and/or decay of natural deposits.

Inorganic Contaminants

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>MCL</th>
<th>MCLG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>ppb</td>
<td>10</td>
<td>N/A</td>
</tr>
<tr>
<td>Barium</td>
<td>ppm</td>
<td>2000</td>
<td>N/A</td>
</tr>
<tr>
<td>Cadmium</td>
<td>ppb</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>Chromium-Total</td>
<td>ppm</td>
<td>100</td>
<td>N/A</td>
</tr>
<tr>
<td>Fluoride</td>
<td>ppm</td>
<td>4</td>
<td>N/A</td>
</tr>
<tr>
<td>Nitrate</td>
<td>ppb</td>
<td>15</td>
<td>N/A</td>
</tr>
<tr>
<td>Lead (A)</td>
<td>ppb</td>
<td>1300</td>
<td>N/A</td>
</tr>
<tr>
<td>Copper (B)</td>
<td>ppb</td>
<td>43</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Typical Sources of Contamination
- Erosion and/or decay of natural deposits.
- Erosion and/or decay of natural deposits; discharge of oil-field wastes; discharge from petroleum refineries.
- Erosion and/or decay of natural deposits; discharge from fertilizer and aluminum factories.
- Erosion and/or decay of natural deposits; discharge from manufacturing industry.
- Erosion and/or decay of natural deposits.
- Erosion and/or decay of natural deposits; discharge from oil-field wastes; discharge from petroleum refineries.
- Erosion and/or decay of natural deposits; discharge from manufacturing industry.
- Erosion and/or decay of natural deposits; discharge from oil-field wastes; discharge from petroleum refineries.
- Erosion and/or decay of natural deposits; discharge from oil-field wastes; discharge from petroleum refineries.
- Erosion and/or decay of natural deposits; discharge from oil-field wastes; discharge from petroleum refineries.
- Erosion and/or decay of natural deposits; discharge from oil-field wastes; discharge from petroleum refineries.
- Erosion and/or decay of natural deposits; discharge from oil-field wastes; discharge from petroleum refineries.
- Erosion and/or decay of natural deposits; discharge from oil-field wastes; discharge from petroleum refineries.
- Erosion and/or decay of natural deposits; discharge from oil-field wastes; discharge from petroleum refineries.

Disinfection By-Products

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>MCL</th>
<th>MCLG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Trihalomethanes (C)</td>
<td>ppb</td>
<td>80</td>
<td>N/A</td>
</tr>
<tr>
<td>Total Haloacetic Acids (D)</td>
<td>ppb</td>
<td>80</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Typical Sources of Contamination
- Product of drinking water treatment processes.
- Product of drinking water treatment processes.

Volatile Organic Contaminants / Synthetic Organic Contaminants

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>MCL</th>
<th>MCLG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylbenzene</td>
<td>ppb</td>
<td>700</td>
<td>N/A</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>ppb</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>Diphthalate</td>
<td>ppb</td>
<td>6</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Typical Sources of Contamination
- Used in the petrochemical industry & gasoline industry.
- Used in the petrochemical industry & gasoline industry.
- Discharge from plastic products, discharge from manufacturing and industry.
- Discharge from rubber and chemical factories.

Unregulated Contaminants

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>MCL</th>
<th>MCLG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methyl tert-butyl ether</td>
<td>ppb</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Sodium</td>
<td>ppm</td>
<td>2.1</td>
<td>N/A</td>
</tr>
<tr>
<td>Nickel</td>
<td>ppm</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>Chlorate</td>
<td>ppm</td>
<td>310</td>
<td>N/A</td>
</tr>
<tr>
<td>Cobalt</td>
<td>ppm</td>
<td>9.9</td>
<td>N/A</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>ppb</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Xylenol</td>
<td>ppb</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>m,p-Xylene</td>
<td>ppb</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Typical Sources of Contamination
- Naturally present in the environment; by-product of drinking water treatment processes.
- Naturally present in the environment; by-product of drinking water treatment processes.
- Naturally present in the environment; by-product of drinking water treatment processes.
- Naturally present in the environment; by-product of drinking water treatment processes.
- Naturally present in the environment; by-product of drinking water treatment processes.
- Naturally present in the environment; by-product of drinking water treatment processes.
- Naturally present in the environment; by-product of drinking water treatment processes.
- Naturally present in the environment; by-product of drinking water treatment processes.
- Naturally present in the environment; by-product of drinking water treatment processes.
- Naturally present in the environment; by-product of drinking water treatment processes.
- Naturally present in the environment; by-product of drinking water treatment processes.
- Naturally present in the environment; by-product of drinking water treatment processes.
- Naturally present in the environment; by-product of drinking water treatment processes.
- Naturally present in the environment; by-product of drinking water treatment processes.
(A) MDE requires that the 90th percentile result for lead be recorded in the highest level column.

(B) MDE requires that the 90th percentile result for copper be recorded in the highest level column.

(C) MDE requires that the Locational Running Annual Average (LRAA) for Total Trihalomethanes be recorded in the highest level column.

(D) MDE requires that the Locational Running Annual Average (LRAA) for Total Haloacetic Acids be recorded in the highest level column.
Notes for the Data Table:

Note 1: The MCL and the MCLG for Total Coliforms is based on the percentage of positive coliform results in a given month. The MCL requires that less than or equal to 5% of the samples test positive. The percentage of positive sample results is shown in the range of detection column.

Note 2: Turbidity standards are based on a treatment technique and are only applicable to systems using surface water as a source. The maximum Turbidity allowed in a given month is 1 NTU, and 95% of the results must be less than 0.3 NTU. This % is indicated in the range of detection column.

Note 3: Compliance with the MCL for these contaminants is based on the average of four quarterly samples.

Note 4: The range of detection numbers represents individual analysis results, not an average. There were no MCL violations at any facility.

Note 5: Compliance with the MCL for Lead and Copper is based on the 90th percentile value of all analysis results. The number of sample results exceeding the MCL for these parameters is indicated in the range of detection column.

Note 6: Testing for some parameters is not required on an annual basis. Some results reflect the most recent testing between 2009 and 2014.

Note 7: Testing required by EPA to determine if an MCL/health standard should be set.

General Notes: *The drinking water was analyzed for more than 145 other parameters. These contaminants do not appear in the data table because they were not detected.
A Message from the County Executive
June 2017

Dear Residents,

Every day County workers strive to make Anne Arundel County the best place to live, work and start a business in Maryland. One way our citizens can be assured that we are meeting our mission is in the quality of the drinking water that we produce through our state-of-the-art water treatment infrastructure. Over the past year, Anne Arundel County produced, treated, and delivered over 12.05 billion gallons of drinking water. After thousands of water quality tests performed in the 2016 calendar year I am pleased to announce that the County once again produced exceptional water and achieved perfect regulatory compliance.

The 2016 Drinking Water Quality serves as a report card demonstrating our performance to treat and deliver safe drinking water from its source to your tap. I encourage you to review this report to learn more about the important work taking place each day by our Department of Public Works employees to manage and maintain our public water infrastructure. These continued efforts protect our public safety, protect this valuable resource, and enable us to continue our long-standing record of exceeding all Federal standards for drinking water quality.

Sincerely,

County Executive Steven Schuh