REPORT

USACE CHESAPEAKE BAY OYSTER RECOVERY, MD AND VA INITIAL SCREENING OF OYSTER REEFS CONSTRUCTED USING ALTERNATE SUBSTRATE

Prepared for

U.S. Army Corps of Engineers Baltimore District 10 South Howard Street Baltimore, Maryland 21201

Prepared by

EA Engineering, Science, and Technology 15 Loveton Circle Sparks, Maryland21152 (410) 771-4950

February 2012

TABLE OF CONTENTS

LIST	OF FIG	URES	ii
APPE	NDICE	sles S	iv
ABBR EXEC	REVIAT CUTIVE	IONS, ACROMNYMS, AND UNITS SUMMARY	v
1.0	PRO	JECT OVERVIEW	
1.1	PF	ROJECT PURPOSE AND OBJECTIVES	1-2
1.2	2 PF	ROJECT LOCATION	
1.3	A A	NALYTICAL TESTING	
2.0	PRO	JECT ORGANIZATION AND PERSONNEL	
3.0	FIEI	D ACTIVITIES	
3.1	SA	AMPLING OBJECTIVES	
3.2	e sa	AMPLING LOCATION DETERMINATION	
3.3	S SA	AMPLE VOLUME REQUIREMENTS	
3.4		SITU WATER QUALITY MEASUREMENTS	
3.5	5 SA	MPLE COLLECTION, STORAGE, AND TRANSPORT	
	3.5.1	Initial Slag and Water Chemical Survey	
	3.5.2	Mill Hill Oyster Reef Screening	
	3.5.3	Severn River Oyster Reef Screening	
	3.5.4	Site Water (TAL Analysis)	
	3.5.5	Sediment Samples (TAL Analysis)	
	3.5.6	Qualitative Description of Reef Community	
	3.5.7	Severn River Plantings	
3.6	5 EC	QUIPMENT DECONTAMINATION PROCEDURES	
4.0	SAM	PLE CHAIN-OF-CUSTODY AND DOCUMENTATION	
5.0	SAM	IPLE PACKING AND SHIPPING	
6.0	RES	ULTS	
6.1	IN	ITIAL SLAG AND WATER CHEMICAL SURVEY	
	6.1.1	Chemical Composition of Slag	
	6.1.2	Metal Concentrations in Water	
6.2	2 0	YSTER REEF QUANTITATIVE SURVEY	
	6.2.1	Water Quality	
	6.2.2	Oyster Characteristics	
	6.2.3	TAL Analysis	
6.3	8 Q	UALITATIVE REEF ANALYSIS	
	6.3.1	Mill Hill	
	6.3.2	Severn River	
	6.3.3	Severn River Tray Analysis	
7.0	REF	ERENCES	

LIST OF FIGURES

Number

<u>Title</u>

- 1-1 Oyster Reefs Located at Mill Hill, Eastern Bay, Maryland
- 1-2 Oyster Reefs Located in Severn River, Maryland
- 2-1 Project Team Organization, USACE Chesapeake Bay Oyster Recovery Program Initial Screening of Oyster Reefs

LIST OF TABLES

Number

Title

- 1-1 Sample Locations at Mill Hill
- 1-2 Sample Locations in Severn River
- 3-1 Summary of Tasks and Analytical Sample Inventory
- 3-2 Method Detection Limits (MDL) for Sediment, Water, and Tissue Analyses
- 6-1 Chemical Concentrations (WT %) in Slag
- 6-2 Metal Concentrations (UG/L) in Water
- 6-3 Mill Hill Water Quality
- 6-4 Severn River Water Quality
- 6-5 Mill Hill Collected Oysters Characteristics
- 6-6 Severn River Collected Oysters Characteristics
- 6-7 Metal Concentrations in Site Water for Mill Hill
- 6-8 Metal Concentrations in Site Water for Severn River
- 6-9 Metal Concentrations (MG/KG) in Sediments from Mill Hill
- 6-10 Metal Concentrations (MG/KG) in Sediments from Severn River
- 6-11 Crassostrea virginia : Replicate Tissue Concentrations for Mill Hill Station MH-Reference
- 6-12 Crassostrea virginia : Replicate Tissue Concentrations for Mill Hill Station MH-1

LIST OF TABLES CONTINUED

<u>Number</u>	<u>Title</u>
6-13	Crassostrea virginia : Replicate Tissue Concentrations for Mill Hill Station MH-2
6-14	Crassostrea virginia : Replicate Tissue Concentrations for Mill Hill Station MH-3
6-15	Crassostrea virginia : Replicate Tissue Concentrations for Mill Hill Station MH-4
6-16	Crassostrea virginia : Replicate Tissue Concentrations for Mill Hill Station MH-5
6-17	Crassostrea virginia : Replicate Tissue Concentrations for Mill Hill Station MH-6
6-18	Crassostrea virginia : Replicate Tissue Concentrations for Mill Hill Station MH-7
6-19	Crassostrea virginia : Replicate Tissue Concentrations for Severn River Station Weems Creek Upper
6-20	Crassostrea virginia : Replicate Tissue Concentrations for Severn River Station Wade 2-2
6-21	Crassostrea virginia : Replicate Tissue Concentrations for Severn River Station Wade 2-3
6-22	Crassostrea virginia : Replicate Tissue Concentrations for Severn River Station Wade 2-4
6-23	Crassostrea virginia : Replicate Tissue Concentrations for Severn River Station Wade 2-5
6-24	Crassostrea virginia : Replicate Tissue Concentrations for Severn River Station Weems Upper
6-25	Divers' Observations of Mill Hill Reefs
6-26	Divers' Observations of Severn River Reefs
6-27	In Situ Water Quality for Tray Placement at the Wade Plot in the Severn River
6-28	Species Count and Percent Cover From Trays at Wade 2-3
6-29	Species Count and Percent Cover From Trays at Wade 2-4
6-30	Species Count and Percent Cover From Trays at Wade 2-5
6-31	Species Count and Percent Cover From Trays at Weems Upper
6-32	Lengths of Oysters Recoverd From Trays at Wade 2-3
6-33	Lengths of Oysters Recoverd From Trays at Wade 2-4
6-34	Lengths of Oysters Recoverd From Trays at Wade 2-5
6-35	Lengths of Oysters Recoverd From Trays at Weems Upper

APPENDICES

- Appendix A Field Sampling Plan
- Appendix B Field Logbook and Dive Trip Reports
- Appendix C University of Maryland Dive Plans
- Appendix D Chain of Custody Forms
- Appendix E Oyster Data from Mill Hill Sites
- Appendix F-1 Mill Hill Reefs Pictures
- Appendix F-2 Severn River Reefs Pictures
- Appendix F-3 Severn River Trays Deployment Pictures
- Appendix F-4 Severn River Trays Collection Pictures

LIST OF ABBREVIATIONS, ACRONYMS, AND UNITS

BOF	blast oxygen furnace
℃ CBF COC	degrees Celsius Chesapeake Bay Foundation Chain of Custody
DGPS DO	Differential Global Positioning System Dissolved Oxygen
EA EPA	EA Engineering, Science, and Technology Environmental Protection Agency
°F FSP	degrees Fahrenheit Field Sampling Plan
HNO ₃	Nitric Acid
in.	inch
L.O.I.	Loss on Ignition
m ² mm MDE MDL MDNR MG/KG mg/L	square meters millimeter Maryland Department of the Environment Method Detection Limit Maryland Department of Natural Resources Micrograms per Kilogram Milligrams per Liter
ORP	Oyster Recovery Partnership
ppm PVC	parts per million Polyvinyl chloride
QC	Quality Control
RL	Reporting Limit
TAL TAT	Target analyte list Turn-around-time
ug/L USACE	Micrograms per Liter United States Army Corps of Engineers
WQC	Water Quality Criteria
YSI	Yellow Springs Instruments

EXECUTIVE SUMMARY

The United States Army Corps of Engineers – Baltimore District (USACE-Baltimore) and its non-federal sponsor, Maryland Department of Natural Resources (MDNR) are permitted to construct oyster reef habitat using alternate substrates. Reefs have been constructed in two tributaries in the Maryland section of the Chesapeake Bay using alternative substrates. Multiple reefs were constructed in Mill Hill by MDNR and 13.4 acres of oyster reef habitat were constructed by the USACE in the Severn River. This project investigated eight Mill Hill sites and six separate Severn River sites.

The eight Mill Hill sites consisted of the following substrate planting combinations:

- MH-1: 6 in. (thickness of planting or depth) shell (3 in. fines and 3 in. shell)
- MH-2: 3in. shell on a 6 in. slag base
- MH-3: 3 in. shell on a 6 in. stone base
- MH-4: 3 in. shell on a 6 in. concrete rubble base
- MH-5: 6 in. recycled concrete
- MH-6: 6 in. slag
- MH-7: 6 in. stone
- MH-8: Oyster shell reference site

The six Severn River sites consisted of the following substrate planting combinations:

- Wade 2-2: concrete, stone, and slag
- Wade 2-3: slag
- Wade 2-4: concrete
- Wade 2-5: stone
- Weems Upper: stone with oyster shell veneer
- Weems Creek Upper: recovered oyster shell (reference site)

EA Engineering, Science, and Technology, Inc. (EA) was contracted by the USACE-Baltimore District to perform metals analysis and an initial screening of oysters growing on various alternate substrates and reef habitats.

The objectives of this study were to perform an initial screening of the oyster reefs and describe their present state; characterize the composition of the steel slag in comparison to its initial composition (assumed to be that of Grubb et al. 2010); perform a qualitative survey of the habitat and ecological community on the reefs; collect specific oyster, water quality, and sediment data at each site; and quantify metal concentrations in oyster tissues, sediments, and water.

Initial slag and water chemical surveys were performed in December 2010 (Mill Hill) and March 2011 (Severn River). Steel slag was sampled from five points in each planting, totaling about 1 pound of slag per site, at MH-2 and MH-6 (Mill Hill) and Wade 2-3 (Severn River). Water samples for metal concentration analysis were collected at the same time.

Oyster reef screening was performed in September 2011 (Mill Hill) and October 2011 (Severn River). At each planting site divers collected all accessible live oysters and provided them to onboard crew for individual size measurements, weighing, and counting of living and box

oysters. From each site divers and the onboard crew collected as close to 200 grams of wet oyster tissue as possible, site water from approximately 6 to 12 inches above the center of each planting, and a five-point composite sediment sample. Visual inspection by divers was performed at each site.

Oyster tissue samples, water samples, and sediment samples were submitted to Test America for Target Analyte List (TAL) analysis. The TAL analysis included the following analytes: aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, nickel, potassium, selenium, silver, sodium, thallium, vanadium, zinc, and cyanide. A total of 40 oyster tissue samples (5 per site), 9 water samples (1 per site and a field blank), and 8 sediment samples (1 per site) were collected from the Mill Hill sites for TAL analysis. A total of 30 oyster tissue samples (5 per site), 7 water samples (1 per site and a field blank), and 6 sediment samples (1 per site) were collected from the Severn River sites for TAL analysis.

To investigate the reef communities at the Severn River, sampling trays were deployed in the following four Severn River sites: Wade 2-3, Wade 2-4, Wade 2-5, and WU. Trays were deployed in May 2011 and collected in September 2011. Upon collection of trays, organisms from each tray were identified and counted.

Metal concentrations from MH-6 and Wade 2-3 were comparable to those of Grubb et al. 2010. Metal concentrations from MH-2 were lower than those of Grubb et al. 2010.

At Mill Hill dissolved oxygen (DO) averaged 7.90 mg/L, salinity 7.90 ppm, pH 8.43, and temperature 21.98 °C. At the Severn River sites DO averaged 7.74 mg/L, salinity 4.78 ppm, and temperature 18.07 °C. The pH meter was malfunctioning and measurements are not available for the Severn River sites.

Oysters collected in all Mill Hill sites ranged from 70.82 mm to 137 mm individual length, and average oyster length per site ranged from 73.43 mm to 98.32 mm. Oyster box to live ratio ranged from 2 box: 1 live to 1 box: 5 live. Blue crabs, mud crabs, anemones, and jelly fish were present in several Mill Hill sites. Fish, mainly gobies, were present in three Mill Hill sites (MH-4, MH-5, and MH7). One Mill Hill site had extensive mussel coverage (MH-6).

Oysters collected in Severn River sites were clumped and smaller than 3 inches, thus individual measurements were not possible. The number of oysters collected in Severn River sites ranged from 167 to 200. Blue crabs were present in two Severn River sites (Wade 2-2 and Wade 2-3). Two Severn River sites had low visibility (Wade 2-4 and Wade 2-5), and two sites had sedimentation present in the substrate (Weems Creek Upper and Wade 2-4).

Ribbed mussels and mud crabs were among the most common organisms found in the trays recovered from the Severn River plantings. Gobies were the most abundant fish collected in all trays. Other commonly found organisms included grass shrimp, barnacles, marine worms, and false dark mussels. The trays in Wade 2-4 had the highest number of benthic organisms, the highest oyster abundance, and the highest fish abundance among all the sites.

1.0 PROJECT OVERVIEW

The United States Army Corps of Engineers – Baltimore District (USACE-Baltimore) and its non-federal sponsor, Maryland Department of Natural Resources (MDNR) are permitted to construct oyster reef habitat using alternate substrates. Reefs have been constructed in two tributaries in the Maryland section of the Chesapeake Bay using alternative substrates, multiple reefs at Mill Hill in Eastern Bay in 2002 (Figure 1-1) and the Severn River in 2009 (Figure 1-2). The reefs in Mill Hill were constructed by MDNR. In 2009, USACE constructed 13.4 acres of oyster reef habitat in the Severn River between the U.S. 50 and Route 450 bridges using oyster shell, stone, concrete, and steel slag on four reefs: Wade, Weems Upper, Traces Hollow, and Peach Orchard (Figure 1-2). The Mill Hill sites and four separate Severn River plantings [Wade, the planting at Weems Upper, and a Chesapeake Bay Foundation (CBF)] planting were investigated by this project.

The composition of the weathered slag in the Severn River and Mill Hill plantings were evaluated to determine if exposure to the estuarine environment has an effect on the metals content of the planted slag. X-ray fluorescence (XRF) was used to determine the bulk composition of the slag. XRF were performed in the laboratory on a composite sample that was collected, pulverized, and homogenized from a five-point sample within each of the reefs restored using slag.

The steel slag placed in the Severn River was produced at the Severstal Steel Mill, operated by Phoenix Services, at Sparrows Point in Baltimore, MD. It is also believed that the material placed at Mill Hill in 2002 would have been from Sparrows Point as this is the regional source of steel slag. According to communications with Phoenix Services, it is reasonable to assume that the composition of the steel slag produced at the facility has not changed since the Mill Hill planting in 2002. Therefore, the bulk composition of steel slag published by Grubb et al. (2010) represents the original composition of the slag prior to placement and was used to compare the composition of the weathered slag at both sites. Analyses were performed so that results can be compared with those presented in Grubb et al. (2010).

In 2002, Maryland Department of Natural Resources (MDNR) constructed seven substrate plantings at the Mill Hill sanctuary using the combinations of substrate shown below:

- 6 in. (thickness of planting or depth) shell (3 in. fines and 3 in. shell)
- 3in. shell on a 6 in. slag base
- 3 in. shell on a 6 in. stone base
- 3 in. shell on a 6 in. concrete rubble base
- 6 in. recycled concrete
- 6 in. slag
- 6 in. stone

Figure 1-1 provides a map of the Mill Hill Sanctuary and various oyster plantings that have been completed since 2000. This site was monitored in 2003 by MDNR for growth, density, oyster mortality, spat-set, and disease. Concrete (32 oysters/m²) and slag (44 oysters/m²) attracted more larvae, or at least resulted in more spat surviving on it, than stone, shell, concrete with shell, reef balls, slag with shell, or stone with shell (<1 to 15 oysters/m²).MDNR Fall Survey data shows

continued presence of oysters on the Mill Hill Sanctuary (adjacent areas to the alternate substrate plantings, but within the Mill Hill Sanctuary).

EA Engineering, Science, and Technology, Inc. (EA) was contracted by the USACE-Baltimore District to perform metals analysis and an initial screening of oysters growing on various alternate substrates and reef habitats.

1.1 PROJECT PURPOSE AND OBJECTIVES

The purpose of this project was to conduct initial screening of oyster reefs restored using alternate substrates. The initial contaminant screening focused on further characterizing the steel slag used to construct oyster reefs and characterizing the oysters growing on the reefs.

Specific objectives of the initial screening study were to:

- Perform an initial screening of oyster reefs constructed of alternate substrates to include a description of their present state and obtain a sample of the substrate;
- Characterize the composition of steel slag exposed to the estuarine environment;
- Perform a qualitative survey of the habitat and ecological community that has developed at the restored sites at Mill Hill and a semi-quantitative screening at the Severn River sites;
- Collect specific data at each site including oyster size, oyster and spat density, oyster mortality, water quality, water depth of each reef, and videography and photography of each reef, and
- Quantify concentrations of metals in oyster tissue.

1.2 PROJECT LOCATION

Distinct plantings have been constructed in two tributaries of the Chesapeake Bay; seven distinct plantings were constructed at Mill Hill in Eastern Bay near Kent Island, Maryland (Figure 1-1), and eleven distinct plantings were constructed in the Severn River near Annapolis, Maryland, between the Route 50 and Route 450 bridges (Figure 1-2). For the initial screening, seven locations plus an oyster shell reef (a total of eight locations) were sampled at Mill Hill and five of the plantings plus an oyster shell reef (a total of six locations) were sampled in the Severn River. Table 1-1 lists the site location coordinates, site ID, and substrate types for the Mill Hill site and Table 1-2 lists the site location coordinates, site ID, and substrate types for the Severn River site.

1.3 ANALYTICAL TESTING

Target analytes, target detection limits, and methodologies were in accordance with U.S. Environmental Protection Agency (EPA) guidance (2000) and Maryland Department of the Environment (MDE) standard operating procedures (2009). Analytical testing was conducted by

TestAmerica Pittsburgh and testing of steel slag samples was conducted by CTLGroup Laboratories. The list of target analytes, target detection limits, methodologies, and sample holding times are derived from the following guidance documents:

- Maryland Department of the Environment (MDE). 2009. Standard Operating Procedures for Fish and Shellfish Collection and Analysis. Draft.
- U.S. Environmental Protection Agency (EPA). 2000. National Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories. Volume 1: Fish Sampling and Analysis. Third Edition. Office of Water. EPA 823-B-00-007.

The Target Analyte List (TAL) analysis for oyster tissue included the following analytes: aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, nickel, potassium, selenium, silver, sodium, thallium, vanadium, zinc, and cyanide.

Steel slag samples were analyzed using XRF to determine bulk composition of the slag.

Figure 1-1. Oyster Reefs Located at Mill Hill, Eastern Bay, Maryland

Figure 1-2. Oyster Reefs Located in Severn River, Maryland

Location ID	Substrate	Size (acres)	Planting Number	Latitude	Longitude
MH-1	6" oveter shall	1	1	38°54.520'	76 ⁰ 13.000'
	(3"fines, 3"shell)		2	38 [°] 54.518'	76 ⁰ 12.924'
			3	38°54.499'	76 ⁰ 13.001'
			4	38°54.499'	76 ⁰ 12.925'
MH-2	3"shell with 6" slag base	1	1	38 ⁰ 54.499'	76 ⁰ 13.001'
			2	38°54.499'	76 ⁰ 12.925'
			3	38 ⁰ 54.478'	76 ⁰ 13.001'
			4	38°54.479'	76 ⁰ 12.923'
MH-3	3"shell with 6" stone base	1	1	38 ⁰ 54.478'	76 ⁰ 13.001'
			2	38 ⁰ 54.479'	76 ⁰ 12.923'
			3	38 ⁰ 54.458'	76 ⁰ 13.001'
			4	38 ⁰ 54.458'	76 ⁰ 12.923'
MH-4	3"shell with 6"	1	1	38 ⁰ 54.458'	76 ⁰ 13.001'
	concrete rubble base		2	38 ⁰ 54.458'	76 ⁰ 12.923'
			3	38°54.439'	76 ⁰ 12.999'
			4	38°54.438'	76 ⁰ 12.924'
MH-5	6"recycled concrete	4.5	1	38°54.438'	76 ⁰ 13.001'
			2	38°54.438'	76 ⁰ 12.924'
			3	38°54.438'	76 ⁰ 12.849'
			4	38°54.395'	76 ⁰ 13.002'
			5	38°54.395'	76 ⁰ 12.924'
			6	38°54.394'	76 ⁰ 12.848'
MH-6	6" slag	1	1	38°54.498'	76 ⁰ 12.924'
			2	38°54.498'	76 ⁰ 12.847'
			3	38 ⁰ 54.479'	76 ⁰ 12.924'
			4	38 [°] 54.479'	76 ⁰ 12.848'
MH-7	6" stone	1	1	38 ⁰ 54.479'	76 ⁰ 12.929'
			2	38 ⁰ 54.479'	76 ⁰ 12.851'
			3	38°54.457'	76 ⁰ 12.923'
			4	38 ⁰ 54.459'	76 ⁰ 12.846'
MH-8	Oyster shell (reference)				

TABLE 1-1. SAMPLE LOCATIONS AT MILL HILL

Location ID	Reef Name	Substrate	Size (acres)	Planting Number	Latitude	Longitude
W2-2	Wade 2-2	concrete, stone,	0.5	1	39 ⁰ 0.162181'	76 ⁰ 30.092999'
		and slag		2	39 ⁰ 0.179640'	76 ⁰ 30.087240'
				3	39 ⁰ 0.187680'	76 ⁰ 30.127439'
				4	39 ⁰ 0.157680'	76 ⁰ 30.083399'
				5	39 ⁰ 0.157919'	76 [°] 30.061859'
W2-3	Wade 2-3	slag	0.25	1	39°0.175980'	76 [°] 30.062221'
				2	39 ⁰ 0.176644'	76 ⁰ 30.083836'
				3	39°0.165361'	76 ⁰ 30.054899'
				4	39 ⁰ 0.147300'	76 [°] 30.054540'
				5	39 ⁰ 0.147600'	76 ⁰ 30.033000'
W2-4	Wade 2-4	concrete	0.25	1	39 ⁰ 0.165660'	76 ⁰ 30.033420'
				2	39 ⁰ 0.136920'	76 ⁰ 30.028020'
				3	39 ⁰ 0.154981'	76 [°] 30.028379'
				4	39 ⁰ 0.155281'	76 ⁰ 30.006839'
				5	39 ⁰ 0.137220'	76 ⁰ 30.006480'
W2-5	Wade 2-5	stone	0.25	1	39°0.136920'	76 ⁰ 30.028020'
				2	39°0.163800'	76 ⁰ 29.556481'
				3	39 ⁰ 0.191280'	76 [°] 29.557320'
				4	39 ⁰ 0.174540'	76 ⁰ 29.470140'
				5	39 ⁰ 0.135121'	76 ⁰ 29.512319'
				6	39 ⁰ 0.163800'	76 ⁰ 29.556481'
WU	Weems	stone with oyster	2.7	1	38 ⁰ 59.916766'	76 ⁰ 29.835171'
	Upper	shell veneer		2	38 ⁰ 59.945521'	76 ⁰ 29.782680'
				3	38 ⁰ 59.968857'	76 ⁰ 29.718556'
				4	38 ⁰ 59.943487'	76 ⁰ 29.724225'
				5	38 ⁰ 59.936220'	76 ⁰ 29.730780'
				6	38 ⁰ 59.915940'	76 ⁰ 29.741220'
				7	38 ⁰ 59.911440'	76 ⁰ 29.749319'
				8	38 ⁰ 59.902602'	76 ⁰ 29.760893'
				9	38 ⁰ 59.897442'	76 ⁰ 29.769779'
				10	38 ⁰ 59.894440'	76 ⁰ 29.779831'
				11	38 ⁰ 59.895269'	76 ⁰ 29.790290'
				12	38 ⁰ 59.899084'	76 ⁰ 29.800857'
				13	38 ⁰ 59.916766'	76 ⁰ 29.835171'
WCU	Weem's Creek	recovered oyster	5	1	39 ⁰ 0.016000'	76 ⁰ 29.740000'
	Upper	shell		2	38 ⁰ 59.986000'	76 ⁰ 29.685000'
				3	38 ⁰ 59.923000'	76 ⁰ 29.847000'
				4	38°59.951000'	76 ⁰ 29.888000'

 TABLE 1-2.
 SAMPLE LOCATIONS IN SEVERN RIVER

2.0 PROJECT ORGANIZATION AND PERSONNEL

The project team was organized to provide professional expertise in each of the major components necessary for the completion of the project. A project team organization chart and the project team contact information are provided in Figure 2-1.

The Field Team consisted of personnel from University of Maryland and a representative of EA Engineering, Science, and Technology, Inc. The University of Maryland was responsible for vessel operations and sample collection. EA was responsible for equipment decontamination, site water collection, homogenization and compositing of samples, labeling and packing of samples, transport of samples to appropriate testing laboratories, and direct coordination with analytical laboratories.

FIGURE 2-1. PROJECT TEAM ORGANIZATION USACE Chesapeake Bay Oyster Recovery Project – Initial Screening of Oyster Reefs

3.0 FIELD ACTIVITIES

The field investigation consisted of an initial screening of oyster reefs, characterization of the composition of steel slag exposed to the estuarine environment, and a qualitative survey of the habitat and ecological community developed at the restored sites. Work was conducted in accordance with the Field Sample Guide (Appendix A) (EA 2011).

3.1 SAMPLING OBJECTIVES

The general objectives of the field sampling and sample processing include:

- Evaluation of steel slag composition from 2 locations (plantings) at Mill Hill and 1 location in the Severn River (Wade 2-3).
- Screening of seven substrate locations and a reference site at Mill Hill.
- Screening of five substrate locations and a reference site in the Severn River.
- *In situ* water quality measurements at each sampling location.
- Submittal of steel slag samples to CTLGroup Laboratories for composition analysis.
- Submittal of oyster tissue samples to TestAmerica for Target Analyte List (TAL) analysis.
- Submittal of water samples for each location for TAL analysis.
- Submittal of sediment sample for each location for TAL analysis.
- Videography and photography at each location.

Table 3-1 presents a summary of the data collected in each task and an inventory of the samples analyzed by Test America and CTLGroup. Table 3-2 lists the method detection limits for sediment, water, and tissue analyses by Test America.

3.2 SAMPLING LOCATION DETERMINATION

Sample locations were provided by USACE-Baltimore. Coordinates (latitude and longitudes) are provided in Table 1-1 (Mill Hill) and Table 1-2 (Severn River). Sampling locations were located in the field using a Differential Global Positioning System (DGPS).

3.3 SAMPLE VOLUME REQUIREMENTS

A minimum mass of 200 grams of wet tissue was required per sample for oyster tissue TAL analysis. Steel slag sample analysis required 1 pound of slag per sample.

3.4 IN SITU WATER QUALITY MEASUREMENTS

Water quality measurements were recorded *in situ* at each sampling location using an YSI water quality probe. Water temperature, salinity, dissolved oxygen, and pH were recorded at the bottom of the water column at each sampling location 6 inches to 12 inches above the reef. The pH meter was malfunctioning and pH measures from the Severn River are not available. The following parameters were recorded in the field log book:

- Location number
- Sampling data and time
- Water temperature [degrees Celsius (°C)]
- Salinity (parts per thousand)
- Dissolved oxygen (milligrams per liter)
- pH

3.5 SAMPLE COLLECTION, STORAGE, AND TRANSPORT

3.5.1 Initial Slag and Water Chemical Survey

Steel slag was sampled from five points within each of the slag plantings at Mill Hill (2 plantings) and at Wade 2-3 in the Severn. The five points were randomly distributed across the planting, but representative of the planting. For each planting, the five samples were pulverized and homogenized into one composite sample for XRF in order to determine the bulk composition of the slag. Approximately 1 pound of slag was collected and submitted to CTL Group Laboratory for analysis at each planting. Water samples for TAL analysis were collected in each of the planting sites. Sampling in Mill Hill was performed on December 2010 and in the Severn River on March 2011.

3.5.2 Mill Hill Oyster Reef Screening

Sampling was performed at each of the seven substrate plantings study sites (MH-1 through MH-7) as well as an adjacent site (MH-Reference) that has been restored using oyster shell by Oyster Recovery Partnership (ORP) (Figure 1-1). Table 1-1 provides the coordinates of the seven Mill Hill plantings, size, and substrate type. Sampling was performed in the Fall of 2011 (September 2011).

On reefs constructed with alternate substrate, traditional harvesting gear cannot be used due to potential damage to the gear. Sampling was undertaken while water temperatures remained above 50° F (10° C). Divers collected enough oysters to recover about 200 grams of wet tissue. The number of oysters collected ranged from about 20-60 depending on oyster lengths at each site. All oysters collected were provided to the onboard crew for size measurement of oysters and counting of living and box oysters. All oysters collected were retained for tissue analysis. The length of all oysters was measured according to standard practices, and living and dead oysters enumerated.

As close to 200 grams of wet tissues from oysters were collected at each of the sampling sites. For TAL analysis, the full soft tissue body of collected oysters was homogenized into one composite sample for each sampling site. The oysters were prepared for analysis and preserved according to the requirements of the analyzing laboratory and in compliance with EPA guidance (EPA 2000) and Maryland Department of the Environment standard operating procedures (MDE 2009). For all samples, the number of oysters collected and the weight and length of each oyster was recorded.

Substrate type was recorded at each location and a representative sample retained to confirm bottom type. Sample size occupied a double-bagged quart-size plastic zip top bag, with as much air removed as possible. For plantings restored using slag, the bottom sample was collected in addition to the slag sample collected for *Section 3.5.1 Slag Composition*.

All samples were preserved according to Table 6-8 in the EPA National Guidance (EPA 2000). Sample handling, processing, and chain of custody was conducted according to Section 7 in the EPA National Guidance (EPA 2000).

3.5.3 Severn River Oyster Reef Screening

Sampling was performed at four study sites at Wade#2 (Wade 2-2 through Wade 2-5), and an additional study site at Weems Upper (WU). A recovered oyster shell reef was used as a reference site, Weems Creek Upper (WCU). Sampling was performed in the Fall of 2011 (October 2011). Figure 1-2 shows the locations of the Severn River plantings and Table 1-2 provides coordinates, size, and substrate type of each site.

At each planting samples were collected by divers (traditional harvesting gear may be damaged on reefs constructed with alternate substrates). Sampling was undertaken while water temperatures remain above 50° F (10° C). Divers collected enough oysters to recover about 200 grams of wet tissue. All oysters collected in the Severn River sites were less than 3 inches in length. In order to collect as close as possible to 200 grams of wet tissue, divers collected over 100 oysters per site. All oysters collected were retained for tissue analysis. Due to the small size of oysters in Severn River sites, individual size measurements and counting of living and box oysters were not feasible.

As close as possible to 200 grams of wet tissues from oysters were collected at each of the sampling sites. For TAL analysis, the full soft tissue body of collected oysters was homogenized into one composite sample for each sampling site. The oysters were prepared for analysis and preserved according to the requirements of the analyzing laboratory and in compliance with EPA guidance (EPA 2000) and Maryland Department of the Environment standard operating procedures (MDE 2009). For all samples, the number of oysters collected for a sample and the weight of wet tissue of collected oysters was recorded.

Substrate type was recorded and a representative sample retained to confirm bottom type. Sample size occupied a double-bagged quart-size plastic zip top bag, with as much air removed as possible. For plantings restored using slag, the bottom sample was collected in addition to the sample collected for *Section 3.5.1 Slag Composition*. All samples were preserved according to Table 6-8 in the EPA National Guidance (EPA 2000). Sample handling, processing, and chain of custody was conducted according to Section 7 in the EPA National Guidance (EPA 2000).

3.5.4 Site Water (TAL Analysis)

Site water was collected at the center of each planting for TAL analysis at the bottom of the water column approximately 6 to 12 in above the reef. Eight site water samples were collected at the Mill Hill plantings and 6 site water samples were collected at the Severn River plantings. Site water samples were kept at 4°C and shipped to Test America laboratory for analysis. A field blank with distilled water was prepared for each river.

3.5.5 Sediment Samples (TAL Analysis)

A five-point composite sediment sample was collected for TAL analysis at each of the eight Mill Hill plantings and six Severn River plantings. For the slag plantings, the five sampling points for sediment collection were co-located with sites where slag was collected per *Section 3.5.1*. Composites were produced by homogenizing the five separate grab samples in a stainless-steel bowl and placing the sediment in a pre-cleaned, laboratory container. The five-points of sediment collection were co-located with sites where slag was collected per *Section 3.5.1*. Composite sediment samples were kept at 4°C and shipped to Test America laboratory for analysis.

3.5.6 Qualitative Description of Reef Community

A visual inspection by divers was performed at all sites in both Mill Hill and the Severn River in order to characterize the reef community at each reef.

Observations on organisms present at the site, nekton species seen using the reef, type of cover on the substrate, water visibility, depth of sedimentation and a general description of the reef site were made at both locations by divers.

3.5.7 Severn River Plantings

Sampling trays were used to investigate the Severn River oyster reef communities. Four trays measuring 56 cm² were placed approximately 3 meters apart from one another on each of the following study sites: Wade 2-3 (slag), Wade 2-4 (concrete), Wade 2-5 (stone), and WU (stone with oyster shell veneer). Four plastic trays were placed within each of the sites and filled with existing site substrate. Oysters were planted at the sites September and August of 2010. Substrate was placed in trays regardless of presence or absence of oysters on substrate. Sampling trays were deployed in the Spring of 2011 (May 2011) and collected in the Fall 2011 (September 2011). Upon collection of trays organisms were identified and counted from each sample tray. Fouling organisms such as barnacles were described as a percent cover of the shell or substrate rather than enumerated.

3.6 EQUIPMENT DECONTAMINATION PROCEDURES

Equipment that came into direct contact with sediment during sampling was decontaminated prior to deployment in the field and between each sampling location to minimize cross-contamination. This included the Ponar grab sampler and stainless steel processing equipment (spoons, knives, bowls, etc.). While performing the decontamination procedure, phthalate-free nitrile gloves were used to prevent phthalate contamination of the sampling equipment or the samples.

The decontamination procedure is described below:

- 1. Rinse equipment using site water
- 2. Rinse with 10 percent nitric acid (HNO₃)
- 3. Rinse with distilled or de-ionized water
- 4. Rinse with methanol followed by hexane
- 5. Rinse with distilled or de-ionized water
- 6. Air dry (in area not adjacent to the decontamination area)

Waste liquids were contained during decontamination procedures and transferred to EA's facility in Sparks, Maryland for proper disposal.

TABLE 3-1. SUMMARY OF TASKS AND ANALYTICAL SAMPLE INVENTORY

Task/ Media Samples for Analytical Laboratory	Slag	Tissue	Water	Substrate
Task 1 Slag Composition				
2 sites Mill Hill ; 5 sampling points each to make composites; choose 3 for Task 2	2			
1 site Severn Wade2-5; five sampling points to make composite ; choose 5 random locations for Task 3	1			
Compare weathered slag with Grubb et al (2010)				
Total samples for XRF Analysis	3			
Task 2 Screening of Mill Hill				
Seven sites plus reference site				
3 samples per site; size, #spat, living and box oysters, substrate type; length; tissue		24		
Tissue replicates (1 sample per site in triplicate)		16		
Water			8	
Sediment/substrate representative sample retained to confirm bottom type				
Five point composite sediment sample				8
Field Data-Dissolved oxygen, temperature, pH, salinity at 6-12"above reef, depth to ree				
Videography; still photos				
Field Blank			1	
Total Samples for TAL analysis Task 2		40	9	8
Task 3 Screening of Severn River Reefs 2011				
Wade #2-2, 2-3, 2-4, 2-5; Weems Upper (5 sites)				
Reference CBF/ORP Site At Weems Upper				
3 samples per site; size, #spat, living and box oysters, substrate type; length; tissue		18		
Tissue replicates (1 sample per site in triplicate)		12		
Sediment/substrate representative sample retained to confirm bottom type				
Water			6	
Sediment				6
Field Data-Dissolved oxygen, temperature, pH, salinity at 6-12"above reef, depth to reel				
Videography; still photos				
Field Blank			1	
Total Samples for TAL analysisTask 2		30	7	6
Task 4A Qualitative Description of Mill Hill 2010				
Qualitative estimates of coverage of quadrat samples by diver				
Record of organisms present for 1 sample on each of 8 plantings				
General description (coverage by fouling organisms, visibility, sedimentation, nekton species)				
Task 4B Qualitative Description of Severn Sites 2011				
Total of Four (4) sampling trays placed on Wade 2-3, 2-4, 2-5, and Weems Upper; organisms from trays to be				
identified and counted				
General description (coverage by fouling organisms, visibility, sedimentation, nekton species)				

TABLE 3-2. METHOD DETECTION LIMITS (MDL) FOR SEDIMENT, WATER, AND TISSUE ANALYSES

TAL Metals (Method 6020)						
Compound	RL	Units	MDL	Units		
Aluminum	3	mg/kg	0.2849	mg/kg		
Antimony	0.2	mg/kg	0.0026	mg/kg		
Arsenic	0.1	mg/kg	0.0181	mg/kg		
Barium	1	mg/kg	0.0107	mg/kg		
Beryllium	0.1	mg/kg	0.0075	mg/kg		
Cadmium	0.1	mg/kg	0.007	mg/kg		
Calcium	10	mg/kg	1.326	mg/kg		
Chromium	0.2	mg/kg	0.0061	mg/kg		
Cobalt	0.05	mg/kg	0.0015	mg/kg		
Copper	0.2	mg/kg	0.033	mg/kg		
Iron	5	mg/kg	0.3539	mg/kg		
Lead	0.1	mg/kg	0.0038	mg/kg		
Magnesium	10	mg/kg	0.187	mg/kg		
Manganese	0.05	mg/kg	0.0103	mg/kg		
Nickel	0.1	mg/kg	0.0113	mg/kg		
Potassium	10	mg/kg	1.3583	mg/kg		
Selenium	0.5	mg/kg	0.0502	mg/kg		
Silver	0.1	mg/kg	0.0039	mg/kg		
Sodium	10	mg/kg	1.369	mg/kg		
Thallium	0.1	mg/kg	0.002	mg/kg		
Vanadium	0.1	mg/kg	0.0079	mg/kg		
Zinc	0.5	mg/kg	0.0648	mg/kg		

Water

TAL Metals (Method 6020)						
Compound	RL	Units	MDL	Units		
Aluminum	30	ug/L	2.5662	ug/L		
Antimony	2	ug/L	0.0187	ug/L		
Arsenic	1	ug/L	0.2908	ug/L		
Barium	10	ug/L	0.098	ug/L		
Beryllium	1	ug/L	0.0367	ug/L		
Cadmium	1	ug/L	0.1144	ug/L		
Calcium	100	ug/L	2.8374	ug/L		
Chromium	2	ug/L	0.5433	ug/L		
Cobalt	0.5	ug/L	0.0263	ug/L		
Copper	2	ug/L	0.2443	ug/L		
Iron	50	ug/L	6.0901	ug/L		
Lead	1	ug/L	0.0192	ug/L		
Magnesium	100	ug/L	1.1665	ug/L		
Manganese	0.5	ug/L	0.0389	ug/L		
Nickel	1	ug/L	0.1749	ug/L		
Potassium	100	ug/L	5.823	ug/L		
Selenium	5	ug/L	0.4216	ug/L		
Silver	1	ug/L	0.0362	ug/L		
Sodium	100	ug/L	3.8135	ug/L		
Thallium	1	ug/L	0.0152	ug/L		
Vanadium	1	ug/L	0.0824	ug/L		
Zinc	5	ug/L	0.9609	ug/L		

Tissues TAL Metals (Method 6020)

(,		
Compound	RL	Units	MDL	Units
Aluminum	3	mg/kg	0.236	mg/kg
Antimony	0.2	mg/kg	0.0033	mg/kg
Arsenic	0.1	mg/kg	0.0165	mg/kg
Barium	1	mg/kg	0.0077	mg/kg
Beryllium	0.1	mg/kg	0.0037	mg/kg
Cadmium	0.1	mg/kg	0.0091	mg/kg
Calcium	10	mg/kg	1.7787	mg/kg
Chromium	0.2	mg/kg	0.008	mg/kg
Cobalt	0.05	mg/kg	0.0025	mg/kg
Copper	0.2	mg/kg	0.0085	mg/kg
Iron	5	mg/kg	0.2887	mg/kg
Lead	0.1	mg/kg	0.0034	mg/kg
Magnesium	10	mg/kg	0.3794	mg/kg
Manganese	0.05	mg/kg	0.0145	mg/kg
Nickel	0.1	mg/kg	0.0068	mg/kg
Potassium	10	mg/kg	0.9931	mg/kg
Selenium	0.5	mg/kg	0.0406	mg/kg
Silver	0.1	mg/kg	0.0024	mg/kg
Sodium	10	mg/kg	0.7241	mg/kg
Thallium	0.1	mg/kg	0.002	mg/kg
Vanadium	0.1	mg/kg	0.0058	mg/kg
Zinc	0.5	mg/kg	0.0117	mg/kg

Mercury	7471A			
Compound	RL	Units	MDL	Units
Mercury	0.033	mg/kg	0.0109	mg/kg

Total Cyanide	9012A			
Compound	RL	Units	MDL	Units
Total Cyanide	0.5	mg/kg	0.0968	mg/kg

Mercury	7470A

Compound	RL	Units	MDL	Units	
Mercury	0.2	ug/L	0.0384	ug/L	

Total Solids 2540G

Compound	RL	Units	MDL	Units
Total Solids	10	mg/L	10	mg/L

Total Cyanide 9012A

Compound	RL	Units	MDL	Units	
Total Cyanide	10	ug/L	1.5	ug/L	

Mercury	7471A

Compound	RL	Units	MDL	Units	
Mercury	0.033	mg/kg	0.0109	mg/kg	

4.0 SAMPLE CHAIN-OF-CUSTODY AND DOCUMENTATION

Field notes were recorded in a permanently bound, dedicated field logbook. A log of sampling activities, location, and water depths was recorded in the log in indelible ink. In addition, in situ water quality measurements were recorded at each sampling location using an electronic water quality monitoring instrument.

Personnel names, local weather conditions, and other information that may impact the field sampling program were also recorded. Similar appropriate information was recorded in the logbook as samples were processed and submitted to the laboratories for analyses. Each page of the logbook is numbered and dated by the personnel entering information. Copies of the logbooks are found in Appendix B.

Divers Trip Reports were submitted by the University of Maryland and contain trip details such as trip length, location, dates, weather conditions, personnel involved and the description of work that occurred during dive trips (Appendix B). Dive plans submitted to the University of Maryland Environmental Safety Division of Administrative Affairs and USACE are available in Appendix C.

Samples collected in the field were documented on a chain-of-custody (COC) available in Appendix D.

5.0 SAMPLE PACKING AND SHIPPING

Slag, site water, oyster tissue, and field blank samples were stored in ice-filled coolers on the work platform until the end of each sampling day. Samples for analytical testing were packaged in bubble wrap, secured individually in ziplock bags, placed in an ice-filled cooler, and shipped via overnight express to TestAmerica and CTL Group laboratories.

Site water, oyster tissue, sediment samples, and field blank samples for chemical analysis were sent directly to the following address:

TestAmerica–Pittsburgh 301 Alpha Drive Pittsburgh, PA. 15238 (412) 963-7058 Attn: Sample Management

Slag samples submitted for chemical analyses were shipped directly to the following address:

CTL Group 5400 Old Orchard Road Skokie, IL 60077-1030 (847) 965-7500 Attn: Scott Nettles

6.0 RESULTS

6.1 INITIAL SLAG AND WATER CHEMICAL SURVEY

6.1.1 Chemical Composition of Slag

The testing laboratory used for the slag chemical composition was the same used by Grubb et al. 2010. The results of the two Mill Hill sites (MH-2 and MH-6), the Severn sample (Wade 2-3), Grubb et al. (2010) slag sample, and Phoenix BOF sample are provided in Table 6-1. Concentrations of all analytes from MH-6 and Wade 2-3 are comparable to those of Grubb et al. (2010) and Phoenix BOF. Concentrations of analytes from MH-2 are lower than those of Grubb et al. (2010) and Phoenix FBO. MH-2 site was 3" shell with a 6" slag base.

6.1.2 Metal Concentrations in Water

Of the 24 tested metals, 20 were detected in the sample water collected at Mill Hill. Beryllium, Cadmium, Silver, and total Cyanide were not detected in any of the samples collected at Mill Hill. Of the 24 tested metals, 17 were detected in the sample water collected at the Severn River. Beryllium, Cadmium, Chromium, Silver, Thallium, Vanadium, and Mercury were not detected in the sample collected at the Severn River (Table 6-2).

6.2 OYSTER REEF QUANTITATIVE SURVEY

6.2.1 Water Quality

Mill Hill

Water samples were collected on September 2011. Dissolved Oxygen (DO) averaged 7.90 mg/L at Mill Hill stations. Salinity averaged 7.90 ppm, pH averaged 8.43, and temperature averaged 21.98°C (Table 6-3).

Severn River

Water samples were collected on October 2011. DO averaged 7.74 mg/L at Severn River stations. Salinity averaged 4.78 ppm and temperature averaged 18.07°C. The pH meter was malfunctioning and measurements are not available for the Severn River sites (Table 6-4).

6.2.2 Oyster Characteristics

Mill Hill

At least 200 grams of wet tissue were collected at all Mill Hill sites. Table 6-5 summarizes the oyster characteristics for tissue collection at each site on Mill Hill. Appendix E contains individual measurements of oysters from all Mill Hill sites. In MH-Reference individual oyster length ranged from 70.82 mm to 121.75 mm, and average oyster length was 98.32 mm. The oyster box to live ratio over the entire MH-Reference reef was 1 box:5 live oysters.

In the Mill Hill study sites individual oyster length ranged from 53.49 mm (MH-2) to 137 mm (MH-7) across all Mill Hill sites. Average length of oysters collected ranged from 73.43 mm (MH-2) to 96.44 mm (MH-1). The oyster box to live ratio ranged from 2 boxes:1 live oyster (MH-6) to 1 box:5 live oysters (MH-3).

Severn River

Weight of wet tissue collected at all Severn River sites was as close to 200 grams as possible. Table 6-6 summarizes the oyster characteristics for tissue collection at each Severn River site. All oysters collected at Severn River were clumped and smaller than 3 inches, individual measurements were not feasible. In WCU, 265 grams of wet tissue was collected from 200 oysters.

In the Severn River study sites total weight collected in each station ranged from 187 grams (Wade 2-4) to 246 grams (Wade 2-2). The number of oysters collected at each site ranged from 167 (Wade 2-4) to 200 (Wade 2-2). Oyster box to live oyster ratio measurements were not feasible at any of these sites.

6.2.3 TAL Analysis

6.2.3.1 Water

Mill Hill

Of the 24 tested metals 16 were detected in site water from the MH Reference site (Table 6-7). Arsenic, Barium, Beryllium, Cadmium, Cobalt, Mercury, Silver, Vanadium, and total Cyanide were not detected in the MH-Reference site.

In the Mill Hill study sites, of the 24 tested metals 19 were detected in site water from all the sites (Table 6-7). Beryllium, Cadmium, Mercury, Silver, and total Cyanide were not detected in any of the Mill Hill study sites. Antimony was detected in all study sites except MH-4 and MH-5. For metals with established Water Quality Criteria (WQC), detected concentrations in the site water were all below EPA saltwater acute and/or chronic WQC.

Severn River

Of the 24 tested metals 16 were detected in site water from the WCU station (reference) (Table 6-8). Antimony, Beryllium, Cadmium, Mercury, Silver, Thallium, Vanadium, and total Cyanide were not detected in the WCU site.

In the remaining Severn River study sites, of the 24 tested metals 17 were detected in site water from all sites (Table 6-8). Antimony, Beryllium, Cadmium, Mercury, Silver, Thallium, and total Cyanide were not detected in any of the Severn River study sites. Arsenic was detected in all sites except for WU. Vanadium was detected in all sites except for Wade 2-3 and WU. For metals with established WQC, detected concentrations of Copper were $3.2 \mu g/L$ at the Wade 2-5 (stone) site, above both the EPA saltwater acute and chronic WQC. No other detected concentrations of metals exceeded EPA saltwater acute and chronic WQC.

6.2.3.2 Sediments

Mill Hill

Of the 24 tested metals 22 were detected in sediments from the MH Reference site (Table 6-9). Mercury and total Cyanide were not detected in the MH Reference site.

In the Mill Hill study sites, of the 24 tested metals 21 were detected in sediments in all of the study sites (Table 6-9). Mercury was not detected in any of the study sites. Selenium was detected in all sites except MH-4 and MH-6. Total Cyanide was only detected in MH-6.

Severn River

Of the 24 tested metals 24 were detected in sediments from the WCU site (reference) (Table 6-10). Arsenic, Chromium, Copper, Lead, Nickel, and Zinc concentrations exceeded TEL concentrations. Arsenic and Nickel concentrations exceeded ERL concentrations.

In the remaining Severn River study sites, of the 24 tested metals 22 were detected in sediments from all the study sites (Table 6-10). Selenium was detected in all sites except for Wade 2-3. Total Cyanide was detected in all sites except for WU. Arsenic concentrations at Wade 2-2 and WU exceed TEL and ERL concentrations. Copper concentrations at Wade 2-2 exceeded TEL concentrations. Nickel concentrations at Wade 2-2 and WU exceeded TEL concentrations.

6.2.3.3 Oyster Tissue

Mill Hill

Of the 24 tested metals 22 were detected in oyster tissues from the MH-Reference Site (Table 6-11). Beryllium and total Cyanide were not detected in the MH-Reference Site.

In all of the remaining Mill Hill study sites, of the 24 tested metals 21 were detected in oyster tissues from all the study sites (Tables 6-12 - 6-18). Beryllium was not detected in any of the Mill Hill sites. Antimony was detected in all sites except MH-2 and MH-7. Thallium was detected in all sites except MH-2, MH-4, and MH-6.

Severn River

Of the 24 tested metals 21 were detected in oyster tissues from the WCU site (reference) (Table 6-19). Beryllium, Mercury, and Thallium were not detected in the WCU station.

In all of the remaining Severn River study sites, of the 24 tested metals 23 were detected in oyster tissues from all sites (Tables 6-20 - 6-24). Mercury was not present in any of the oyster tissues from all the Severn River study sites. Beryllium was only detected in Wade 2-3. Thallium was detected in all sites except Wade 2-5.

6.3 QUALITATIVE REEF ANALYSIS

6.3.1 Mill Hill

Detailed divers' observations from each Mill Hill site are contained in Table 6-25. Pictures from Mill Hill stations MH-2 and MH-6 collected during the December 2010 dive can be found in Appendix F-1. The station MH-Reference had blue crabs and jellies present, most oysters were clumped, and there were very few mussels and barnacles covering the site. The main part of the reef was covered in shell, but the edges were sandy. No fish were present in MH-Reference. In the other Mill Hill sites, blue crabs, mud crabs, anemones, and jellies were present. Fish, mainly gobies, were present in MH-4 (shell with concrete rubble base), MH-5 (recycled concrete) and MH-7 (stone). MH-1 (oyster shell) and MH-2 (shell with slag base) were covered in broken shells or oysters. MH-3 (shell with stone base), MH-4, MH-5, MH-6 (slag), and MH-7 were covered in mostly barnacles and mussels. Additional divers' observations indicate there was extensive mussel covering most of the substrate at MH-6 (Appendix B). Oysters in MH-3and MH-4 were found mostly in clumps, while oysters in MH-1were found mostly as single oysters.

6.3.2 Severn River

Detailed divers' observations from each Severn River site are contained in Table 6-26. Pictures from substrate collected at the Wade 2-3 station during the March 2011 dive can be found in Appendix F-2. WCU (reference) was muddy and shells were present in the sediments. In sites Wade 2-2 (mixed substrate) and Wade 2-3 (slag) there were blue crabs present. Wade 2-3 was shallower than the other study sites. Wade 2-4 (concrete) and Wade 2-5 (stone) had low visibility. In Wade 2-3, Wade 2-5, and WU oysters were concentrated in troughs of substrates. Additional divers' observations indicate there was spat present on shell discovered at Wade 2-3 (Appendix B).

6.3.3 Severn River Tray Analysis

Water quality data from each site was collected at the time of planting and can be found in Table 6-27. Pictures of the trays prior to deployment and after collection can be found in Appendix F-3 and F-4 respectively. Tables 6-28–6-31 summarize the species collected from each tray at the Severn River. Divers were unable to locate one of the trays from site WU, which detached from the substrate. The planting at Wade 2-4 had the highest number of benthic organisms among all the sites. Among all plantings, the most abundant benthic species collected were ribbed mussels (*Geukensiademissa*) and mud crabs (*Rhithropanopeusharrisii*).

Oysters were the most abundant in Wade 2-4, and the least abundant on Wade 2-3, only one oyster was recovered from Wade 2-3. Lengths of the oysters collected from the trays are in Table 6-32 - 6-35.

Gobies (*Gobiosomabosci*) were the most abundant fish collected in all plantings. Wade 2-4 had the highest number of fish present. Additionally, barnacles (*Balanus improvises*), bryozoans, and hydrozoans were found covering the planting substrates in most sites.

ANALYTE UNITS		MH-2	МН-6	Wade 2-3	Slag from Grubb et al. 2010	Slag from Phoenix (BOF)*
Al_2O_3	Wt.%	0.13	9.06	5.13	4.09	1.22
Alkalies as NA ₂ O	Wt.%	0.27	0.05	< 0.01		
BaO	Wt.%	< 0.01	< 0.01	< 0.01		
CaO		54.26	39.37	37.51	37.21	41.14
Cr ₂ O ₃	Wt.%	< 0.01	0.62	0.23		
Fe ₂ O ₃	Wt.%	0.12	20.1	28.07	26.84	
K ₂ O	Wt.%	0.05	0.02	< 0.01	0.02	
L.O.I. (950°C)	Wt.%	43.75	2.79	-1.38		
MgO	Wt.%	0.33	10.62	11.15	10.31	9.21
Mn ₂ O ₃	Wt.%	0.08	4.79	4.3	3.97	
Na ₂ O	Wt.%	0.24	0.04	< 0.01	0.03	
P_2O_5	Wt.%	0.07	0.72	0.62	0.78	0.63
SiO ₂	Wt.%	0.72	10.2	13.31	10.65	14.34
SO ₃	Wt.%	0.24	0.41	0.13	0.16	
SrO	Wt.%	0.13	0.03	0.03		
TiO ₂	Wt.%	0.01	0.41	0.36	0.46	0.41
ZnO	Wt.%	< 0.01	< 0.01	< 0.01		
Exposure Time		9 years	9 years	11 months		

TABLE 6-1. CHEMICAL CONCENTRATIONS (WT. %) IN SLAGINITIAL SCREENING OF OYSTER REEFS (MARCH 2011)

*production driven monitoring of Severstal BOF slag from Jan 1, 2010 to Sep 1, 2010 by Phoenix Services

MH-2 = 3" shell with 6" slag base (Sample ID MH-1-Slag)

MH-6 = 6" slag (Sample ID MH-2-Slag)

Wade 2-3 = slag (Sample ID W-1-Slag)

ANALYTE	UNITS	RL	MH-2 ^(a)	MH-6 ^(a)	Wade 2-3 ^(b)
ALUMINUM	UG/L	150	130 J	372	96.4 B
ANTIMONY	UG/L	10	0.24 J 0.62 J		2.1 B
ARSENIC	UG/L	5	5.5	4.9 J	4.2 B
BARIUM	UG/L	50	33.8 J	35.2 J	27 B
BERYLLIUM	UG/L	5	5 U	5 U	5 U
CADMIUM	UG/L	5	5 U	5 U	5 U
CALCIUM	UG/L	500	152,000 B	159,000 B	62,900
CHROMIUM, TOTAL	UG/L	10	5.8 J	6.7 J	10 U
COBALT	UG/L	2.5	0.68 J	0.68 J	0.34 B
COPPER	UG/L	10	3.1 J	1.9 J	2.1 B
IRON	UG/L	250	463 B	476 B	381
LEAD	UG/L	5	1.2 J	3.7 J	0.26 B
MAGNESIUM	UG/L	500	419,000 B	439,000 B	173,000
MANGANESE	UG/L	2.5	27.7 B E	40.6 B	61.4
NICKEL	UG/L	5	2.2 J	2.2 J	2.9 B
POTASSIUM	UG/L	500	129,000	134,000	54,800
SELENIUM	UG/L	25	17 J	15.8 J	13.8 B
SILVER	UG/L	5	5 U	5 U	5 U
SODIUM	UG/L	500	3,260,000	3,470,000	1,440,000 J
THALLIUM	UG/L	5	5 U	0.58 J	5 U
VANADIUM	UG/L	5	1.6 B J	0.54 B J	5 U
ZINC	UG/L	25	14.5 B J	13 B J	10.6 B
MERCURY	UG/L	0.2	0.2 U	0.059 J	0.2 U

TABLE 6-2. METAL CONCENTRATIONS (UG/L) IN WATER INITIAL SCREENING OF OYSTER REEFS

TOTAL CYANIDE		UG/L	10	10 U	10 U	3.1 B J
NOTES: Bold values represent detected concentrations.						

RL is reported for non-detected constituents.

(a) = collected on 12/10/2010 at Mill Hills

(b) = collected on 3/22/2011 in Severn River

MH-2 = 3" shell with 6" slag base (Sample ID MH-1-Slag)

MH-6 = 6" slag (Sample ID MH-2-Slag)

Wade 2-3 = slag (Sample ID W-1-Slag)

RL = average reporting limit

J = compound was detected, but below the reporting limit (value is estimated)

 \mathbf{B} = detected in the laboratory method blank

 \mathbf{E} = concentration detected is over the method calibration limit

U = compound was analyzed but not detected out or above the RL

Station	Temperature (°C)	Salinity (ppm)	pН	Dissolved Oxygen (mg/L)
MH-Reference	22.33	7.91	8.62	8.91
MH-1	21.72	7.89	8.39	7.4
MH-2	21.88	7.9	8.29	7.24
MH-3	21.94	7.87	8.44	7.83
MH-4	22.15	7.89	8.58	8.42
MH-5	22.05	7.9	8.48	7.87
MH-6	21.78	7.91	8.22	7.04
MH-7	21.97	7.89	8.44	7.52
Average	21.98	7.90	8.43	7.78

TABLE 6-3. MILL HILL WATER QUALITY
September 2011

Station	Temperature (°C)	Salinity (ppm)	pН	Dissolved Oxygen (mg/L)
WCU	17.92	4.79	NA	7.81
Wade 2-2	18.05	4.78	NA	6.69
Wade 2-3	18.1	4.76	NA	7.91
Wade 2-4	18.1	4.75	NA	7.61
Wade 2-5	18.23	4.74	NA	8.67
WU	17.99	4.84	NA	7.75
Average	18.07	4.78	NA	7.74

TABLE 6-4. SEVERN RIVER WATER QUALITYOctober 2011

TABLE 6-5. MILL HILL COLLECTED OYSTERS CHARACTERISTICS September 2011

		Number of	Length Range	Average	Average	Total Weight	Oyster Box to
Station	Substrate Type	Oysters	(mm)	Length (mm)	Width (mm)	(grams)	Live Ratio
Reference (MH-8)	Restored Oyster Shell Reef	44	70 82-121 75	98 32	26 35	392	1 box · 5 live
MH-1	6" oyster shell (3" fines, 3" shell)	28	57.96-120.76	96.44	39.08	267	1 box : 3 live
MH-2	3" shell with 6" slag base	38	53.49-115.48	73.43	25.19	233	1 box : 3 live
MH-3	3" shell with 6" stone base	60	67.60-109.49	84.26	22.50	432	1 box : 5 live
MH-4	3" shell with 6" concrete rubble base	47	59.84-133.73	86.03	25.37	327	1 box : 3 live
MH-5	6" recycled concrete	23	55.15-132.17	81.55	24.54	209	1 box : 1 live
MH-6	6" slag	39	65.23-125.56	88.85	29.34	339	2 box : 1 live
MH-7	6" stone	33	57.53-137.00	93.93	32.07	363	1 box : 1 live

TABLE 6-6. SEVERN RIVER COLLECTED OYSTERS CHARACTERISTICS October 2011

		Weight	Number of
Location	Substrate	(grams)	Oysters
	Recovered Oyster		
WCU	Shell	265	100+
	Concrete, stone, and		
Wade 2-2	slag	246	200
Wade 2-3	Slag	225	170
Wade 2-4	Concrete	187	167
Wade 2-5	Stone	211	150+
	Stone with Oyster		
WU	Shell Veneer	231	100+
TABLE 6-7. METAL CONCETRATIONS IN SITE WATER FOR MILL HILLSeptember 2011

ANALYTE	UNITS	EPA ACUTE CRITERIA	EPA CHRONIC CRITERIA	RL	MH-REF	MH-1	MH-2	МН-3	MH-4	MH-5	МН-6	MH-7	Field Blank
ALUMINUM	UG/L			30	9.6 J B	110 B	270 B	90 B	98 B	150 B	420 B	96 B	14 J B
ANTIMONY	UG/L			1.34	0.091 J	0.11 J	0.076 J	0.072 J	0.019 U	0.019 U	0.021 J	0.94 J	0.019 U
ARSENIC	UG/L	69	36	0.84	0.29 U	4.1	4.1	4.5	4.8	4.4	4.9	3.9	0.29 U
BARIUM	UG/L			7.8	0.098 U	34 B	33 B	33 B	34 B	35 B	33 B	34 B	0.098 U
BERYLLIUM	UG/L			0.037	0.037 U								
CADMIUM	UG/L	40	8.8	0.11	0.11 U								
CALCIUM	UG/L			100	37 J B	120000 B	120000 B	120000 B	120000 B	130000 B	120000 B	120000 B	52 J B
CHROMIUM	UG/L	1100	50	2	3.5	4.1	4.6	4.8	4.8	5.3	5.8	4.5	3.2
COBALT	UG/L			0.395	0.026 U	0.53	0.58	0.55	0.56	0.63	0.72	0.5	0.026 U
COPPER	UG/L	4.8	3.1	2	0.41 J	2.1	2	1.8 J	2.2	1.8 J	2.1	2	0.43 J
IRON	UG/L			50	11 J B	190 B	300 B	150 B	160 B	220 B	520 B	150 B	11 J B
LEAD	UG/L	210	8.1	1	0.036 J B	0.88 J B	0.95 J B	0.73 J B	0.48 J B	0.72 J B	1.3 B	2.1 B	0.13 J B
MAGNESIUM	UG/L			100	53 J B	360000 B	340000 B	360000 B	360000 B	360000 B	340000 B	360000 B	32 J B
MANGANESE	UG/L			5	0.16 J B	48 B	66 B	46 B	47 B	58 B	94 B	49 B	0.21 J B
MERCURY	UG/L	1.8	0.94	0.038	0.038 U								
NICKEL	UG/L	74	8.2	0.908	0.21 J	2	1.8	1.6	1.6	1.9	2	1.5	0.17 U
POTASSIUM	UG/L			100	36 J	110000	100000	110000	110000	110000	100000	110000	25 J
SELENIUM	UG/L	290	71	5	1.3 J	12	12	15	15	16	15	13	0.65 J
SILVER	UG/L	1.9		0.036	0.036 U								
SODIUM	UG/L			3911	450 B	3000000 B	3000000 B	3100000 B	3100000 B	3200000 B	2700000 B	2900000 B	300 B
THALLIUM	UG/L			0.89	0.017 J B	0.054 J B	0.045 J B	0.038 J B	0.035 J B	0.035 J B	0.022 J B	0.018 J B	0.015 U
VANADIUM	UG/L			0.694	0.082 U	0.6 J B	1.3 B	0.76 J B	0.82 J B	0.92 J B	1.4 B	0.082 U	0.082 U
ZINC	UG/L	90	81	5	1.4 J	7.9	7.7	5.9	6.6	4.2 J	9.6	5.1	2.7 J

1.5 U

1.5 U

1.5 U

*Sources: USEPA 2011. National Recommended Water Quality Criteria

1

1

UG/L

RL = average reporting limit

CYANIDE, TOTAL

 \mathbf{B} = compound was detected in the laboratory method blank

a= Exceeds acute criterion

1.5 U

1.5 U

1.5 U

1.5 U

1.5 U

 \mathbf{J} = compound was detected, but below the reporting limit (value is estimated)

1.5 U

U = compound was analyzed, but not detected

1.5

b= Exceeds chronic criterion

TABLE 6-8. METAL CONCENTRATIONS IN SITE WATER FOR SEVERN RIVER

October 2011

ANALYTE	UNITS	EPA ACUTE	EPA CHRONIC	RL	WCU	W2-2	W2-3	W2-4	W2-5	WU	Field Blank
ALUMINUM	UG/L			150	150	320	340	250	390	230	5.5 J
ANTIMONY	UG/L			0.094	0.094 U	0.094 U	0.094 U	0.094 U	0.094 U	0.094 U	2 U
ARSENIC	UG/L	69	36	4.41	1.5 J	3.1 J	3.1 J	3 J	2 J	1.5 U	1 U
BARIUM	UG/L			50	29 J	28 J	30 J	29 J	29 J	29 J	10 U
BERYLLIUM	UG/L			0.18	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	1 U
CADMIUM	UG/L	40	8.8	0.57	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U	1 U
CALCIUM	UG/L			500	60000 B	59000 B	61000 B	62000 B	60000 B	61000 B	7 J B
CHROMIUM	UG/L	1100	50	10	4.7 J	4.2 J	4.9 J	4.8 J	6.1 J	4.7 J	0.66 J
COBALT	UG/L			2.5	0.27 J	0.42 J	0.41 J	0.29 J	0.42 J	0.34 J	0.5 U
COPPER	UG/L	4.8	3.1	10	2.7 J	2.6 J	2.9 J	2.6 J	3.2 J b	2.5 J	2 U
IRON	UG/L			250	390	790	830	590	930	540	50 U
LEAD	UG/L	210	8.1	5	1.4 J B	1.4 J B	2.6 J B	0.98 J B	2.5 J B	1.1 J B	0.069 J B
MAGNESIUM	UG/L			500	160000	160000	170000	170000	160000	170000	2.1 J
MANGANESE	UG/L			25	39	56	56	46	61	44	5 U
MERCURY	UG/L	1.8	0.94	0.038	0.038 U	0.038 U	0.038 U	0.038 U	0.038 U	0.038 U	0.2 U
NICKEL	UG/L	74	8.2	5	1.7 J	2.2 J	2.2 J	1.7 J	2 J	1.6 J	1 U
POTASSIUM	UG/L			500	47000	47000	49000	49000	47000	48000	100 U
SELENIUM	UG/L	290	71	25	6.3 J	4.7 J	8.2 J	6.7 J	6 J	5.1 J	5 U
SILVER	UG/L	1.9		0.18	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	1 U
SODIUM	UG/L			500	1200000 B	1200000 B	1300000 B	1300000 B	1300000 B	1300000 B	38 J B
THALLIUM	UG/L			0.897	0.076 U	0.076 U	0.076 U	0.076 U	0.16 J	0.076 U	1 U
VANADIUM	UG/L			2.71	0.41 U	1.4 J	0.41 U	1.1 J	1.4 J	0.41 U	1 U
ZINC	UG/L	90	81	25	6.1 J	7.3 J	6.9 J	6.1 J	8.7 J	6.4 J	5 U
CYANIDE, TOTAL	UG/L	1	1	1.5	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	10 U

*Sources: USEPA 2011. National Recommended Water Quality Criteria

RL = average reporting limit

 \mathbf{B} = compound was detected in the laboratory method blank

J = compound was detected, but below the reporting limit (value is estimated)

a= Exceeds acute criterion

b= Exceeds chronic criterion

TABLE 6-9. METAL CONCENTRATIONS (MG/KG) IN SEDIMENT FROM MILL HILL

September 2011

							MH-							
ANALYTE	UNITS	RL	TEL*	PEL*	ERL**	ERM**	Reference	MH-1	MH-2	MH-3	MH-4	MH-5	MH-6	MH-7
ALUMINUM	MG/KG	2.000					640.00	740	800	820	770	700	1200	870
ANTIMONY	MG/KG	0.130	-				0.097 J	0.097 J	0.028 J	0.022 J	0.041 J	0.047 J	0.035 J	0.019 J
ARSENIC	MG/KG	0.066	7.24	41.6	8.2	70	0.68	0.85	0.91	0.6	0.72	0.46	1.2	0.9
BARIUM	MG/KG	0.661					4.1 B	4.1 B	3.1 B	3.9 B	4.2 B	2.6 B	5.9 B	3.6 B
BERYLLIUM	MG/KG	0.066					0.062 J	0.053 J	0.061 J	0.047 J	0.053 J	0.047 J	0.077	0.055 J
CADMIUM	MG/KG	0.066	0.676	4.21	1.2	9.6	0.025 J	0.034 J	0.033 J	0.04 J	0.038 J	0.034 J	0.047 J	0.032 J
CALCIUM	MG/KG	6.613					4100 B	24000 B	4900 B	31000 B	10000 B	2800 B	11000 B	6800 B
CHROMIUM	MG/KG	0.130	52.3	160.4	81	370	1.9 B	2.1 B	2.8 B	2.4 B	2.3 B	2.2 B	26 B	3 B
COBALT	MG/KG	0.033					1.10	1.2	1.5	1.3	1.4	0.96	1.7	1.1
COPPER	MG/KG	0.130	18.7	108.2	34	270	2.20	1.4	1.5	1.9	12	6.7	2	1.4
IRON	MG/KG	3.325					1300.0	1500	1700	1600	1700	1400	4900	1800
LEAD	MG/KG	0.066	30.24	112.18	46.7	218	2.0	1.6	1.9	1.7	2	1.8	2.3	1.7
MAGNESIUM	MG/KG	6.613					320 B	450 B	380 B	600 B	930 B	910 B	2200 B	420 B
MANGANESE	MG/KG	0.333					65 B	120 B	72 B	150 B	150 B	57 B	500 B	110 B
MERCURY	MG/KG	0.007	0.13	0.696	0.15	0.71	0.0071 U	0.0071 U	0.007 U	0.0074 U	0.0072 U	0.0073 U	0.0077 U	0.0074 U
NICKEL	MG/KG	0.066	15.9	42.8	20.9	51.6	1.60	1.5	1.7	1.5	1.7	1.4	2.3	1.6
POTASSIUM	MG/KG	6.613					140.00	160	160	170	160	150	170	170
SELENIUM	MG/KG	0.257					0.059 J	0.048 J	0.067 J	0.062 J	0.033 U	0.059 J	0.034 U	0.075 J
SILVER	MG/KG	0.066	0.73	1.77	1	3.7	0.011 J	0.012 J	0.018 J	0.01 J	0.012 J	0.011 J	0.015 J	0.012 J
SODIUM	MG/KG	6.613					930.00	1100	930	1300	1200	1200	1300	930
THALLIUM	MG/KG	0.066					0.038 J	0.046 J	0.053 J	0.045 J	0.044 J	0.029 J	0.048 J	0.028 J
VANADIUM	MG/KG	0.066					1.9 B	2 B	2.5 B	2.4 B	2.7 B	2.5 B	13 B	2.6 B
ZINC	MG/KG	0.333	124	271	150	410	7.4000	6.8	8.1	8.3	8.4	8	12	8.5
CYANIDE, TOTAL	MG/KG	0.101					0.066 U	0.064 U	0.064 U	0.067 U	0.065 U	0.065 U	0.14 J	0.066 U

*Source: MacDonald et al. 1996. Ecotoxicology 5: 253-278.

**Source: Long et al. 1995. Environmental Management 19 (1).

NOTE: Bold and shaded concentrations exceed sediment quality guidelines.

 \mathbf{B} = detected in the laboratory method blank

J = compound was detected, but below the reporting limit (value is estimated)

U = compound was analyzed, but not detected

RL = average reporting limit TEL = threshold effects value PEL = probable effects level ERL = effects range low ERM = effects range median a= exceeds TEL b= exceeds PEL c= exceeds ERL d=exceeds ERM

TABLE 6-10 . METAL CONCENTRATIONS (MG/KG) IN SEDIMENT FROM SEVERN RIVER

October 2011

ANALYTE	UNITS	RL	TEL*	PEL*	ERL**	ERM**	WCU	W2-2	W2-3	W2-4	W2-5	WU
ALUMINUM	MG/KG	2.483					11000	8900	1100	6900	1100	8000
ANTIMONY	MG/KG	0.163					0.49 B	0.35 B	0.046 J B	0.28 B	0.35 B	0.29 B
ARSENIC	MG/KG	0.083	7.24	41.6	8.2	70	13 ac	8.9 ac	1.1	7	1	11 ac
BARIUM	MG/KG	0.827					23 B	22 B	5.4 B	20 B	13 B	17 B
BERYLLIUM	MG/KG	0.083					1.3	1.1	0.12	0.79	0.12	0.9
CADMIUM	MG/KG	0.083	0.676	4.21	1.2	9.6	0.28	0.3	0.033 J	0.27	0.06 J	0.24
CALCIUM	MG/KG	59					990 B	23000 B	28000 B	55000 B	370000 B	4100 B
CHROMIUM	MG/KG	0.163	52.3	160.4	81	370	58 B a	51 B	6.4 B	42 B	43 B	44 B
COBALT	MG/KG	0.042					14	12	2	9.8	1.6	11
COPPER	MG/KG	0.163	18.7	108.2	34	270	24 a	23 a	2.7	17	3.3	17
IRON	MG/KG	4.167					40000 B	33000 B	3500 B	25000 B	10000 B	30000 B
LEAD	MG/KG	0.083	30.24	112.18	46.7	218	33 B a	27 B	3.4 B	27 B	17 B	24 B
MAGNESIUM	MG/KG	8.267					3700 B	4000 B	910 B	3300 B	4000 B	3000 B
MANGANESE	MG/KG	2.865					770 B	1200 B	320 B	1500 B	2400 B	720 B
MERCURY	MG/KG	0.028	0.13	0.696	0.15	0.71	0.12	0.11	0.0098 J	0.087	0.045	0.11
NICKEL	MG/KG	0.083	15.9	42.8	20.9	51.6	21 ac	19 a	2.2	15	0.13	17 a
POTASSIUM	MG/KG	8.267					4000	3200	370	2500	350	2900
SELENIUM	MG/KG	0.366					0.93	0.75	0.034 U	0.61	0.12 J	0.75
SILVER	MG/KG	0.083	0.73	1.77	1	3.7	0.22	0.16	0.016 J	0.13	0.023 J	0.16
SODIUM	MG/KG	8.267					2100 B	2000 B	770 B	1600 B	2300 B	2100 B
THALLIUM	MG/KG	0.083					0.089 J	0.086 J	0.035 J	0.082	0.017 J	0.072 J
VANADIUM	MG/KG	0.083					56	48	5.5	38	23	42
ZINC	MG/KG	0.417	124	271	150	410	140 a	120	19	110	15	110

*Source: MacDonald et al. 1996. Ecotoxicology 5: 253-278.

MG/KG

**Source: Long et al. 1995. Environmental Management 19 (1).

NOTE: Bold and shaded concentrations exceed sediment quality guidelines.

0.367

--

--

--

 \mathbf{B} = detected in the laboratory method blank

CYANIDE, TOTAL

J = compound was detected, but below the reporting limit (value is estimated)

 $\mathbf{U} =$ compound was analyzed, but not detected

RL = average reporting limit TEL = threshold effects value

--

PEL = probable effects level

 $\mathbf{ERL} = \mathbf{effects} \text{ range low}$

0.18 J B

ERM = effects range median

a= exceeds TEL b= exceeds PEL c= exceeds ERL d=exceeds ERM

0.11 J B

0.41 B

0.089 U

0.27 J B

0.19 J B

TABLE 6-11. Crassostrea virginica : REPLICATE TISSUE CONCENTRATIONS FOR MILL HILL STATION MH-REFERENCE

September 2011

				Mill Hi	ill Station MH-Reference				
						Sample C			
ANALYTE	UNITS	RL	Sample A	Sample B	С	Duplicate	Triplicate		
ALUMINUM	MG/KG	2.750	15	23	11	36	31		
ANTIMONY	MG/KG	0.183	0.19 U	0.12 J	0.013 J	0.0065 J	0.16 U		
ARSENIC	MG/KG	0.092	0.54	1.1	0.7	1	1		
BARIUM	MG/KG	0.916	0.17 J	0.22 J	0.11 J	0.31 J	0.33 J		
BERYLLIUM	MG/KG	0.092	0.095 U	0.092 U	0.096 U	0.091 U	0.081 U		
CADMIUM	MG/KG	0.092	0.11	0.22	0.13	0.24	0.2		
CALCIUM	MG/KG	9.155	600 B	780 B	400 B	1200 B	1500 B		
CHROMIUM	MG/KG	0.183	0.068 J	0.056 J	0.055 J	0.078 J	0.075 J		
COBALT	MG/KG	0.046	0.057	0.079	0.057	0.1	0.092		
COPPER	MG/KG	0.183	6.3	10	5.8	8.4	7.3		
IRON	MG/KG	4.583	35	58	31	80	75		
LEAD	MG/KG	0.092	0.053 J B	0.074 J B	0.041 J B	0.099 B	0.084 B		
MAGNESIUM	MG/KG	9.155	290 B	270 B	280 B	280 B	270 B		
MANGANESE	MG/KG	0.458	7 B	8.8 B	7.7 B	14 B	13 B		
MERCURY	MG/KG	0.032	0.033 U	0.014 J	0.014 J	0.015 J	0.015 J		
NICKEL	MG/KG	0.092	0.54	0.53	0.53	0.54	0.51		
POTASSIUM	MG/KG	9.155	960	1400	1300	1500	1500		
SELENIUM	MG/KG	0.458	0.3 J	0.63	0.44 J	0.62	0.62		
SILVER	MG/KG	0.092	0.064 J	0.12	0.075 J	0.1	0.098		
SODIUM	MG/KG	9.155	1800	1300	1600	1300	1200		
THALLIUM	MG/KG	0.092	0.095 U	0.092 U	0.0086 J	0.0045 J	0.002 J		
VANADIUM	MG/KG	0.092	0.078 J	0.1	0.053 J	0.12	0.12		
ZINC	MG/KG	0.458	180 B	260 B	150 B	260 B	230 B		
CYANIDE, TOTAL	MG/KG	0.495	0.49 U	0.5 U	0.49 U	0.5 U	0.5 U		

NOTES: Bold values represent detected concentrations.

RL is reported for non-detected constituents.

Tissue concentrations are reported as wet weight

RL = average reporting detection limit

 \mathbf{B} = detected in the laboratory method blank

J = compound was detected, but below the reporting limit (value is estimated)

TABLE 6-12. Crassostrea virginica : REPLICATE TISSUE CONCENTRATIONS FOR MILL HILL STATION MH-1 September 2011

			Mill Hill Station MH-1					
						Sample C		
ANALYTE	UNITS	RL	Sample A	Sample B	С	Duplicate	Triplicate	
ALUMINUM	MG/KG	2.750	10	8.6	11	9.3	8.4	
ANTIMONY	MG/KG	0.183	0.007 J	0.11 J	0.03 J	0.012 J	0.0049 J	
ARSENIC	MG/KG	0.092	0.98	0.91	1	1	0.87	
BARIUM	MG/KG	0.916	0.18 J	0.18 J	0.39 J	0.18 J	0.16 J	
BERYLLIUM	MG/KG	0.092	0.095 U	0.091 U	0.091 U	0.089 U	0.081 U	
CADMIUM	MG/KG	0.092	0.33	0.32	0.41	0.26	0.22	
CALCIUM	MG/KG	9.155	1200 B	720 B	1300 B	1400 B	720 B	
CHROMIUM	MG/KG	0.183	0.11 J B	0.12 J B	0.14 J B	0.064 J B	0.058 J B	
COBALT	MG/KG	0.046	0.089	0.092	0.11	0.11	0.092	
COPPER	MG/KG	0.183	11	8.9	11	12	9.6	
IRON	MG/KG	4.583	43	35	42	41	35	
LEAD	MG/KG	0.092	0.044 J B	0.045 J B	0.053 J B	0.049 J B	0.041 J B	
MAGNESIUM	MG/KG	9.155	280 B	280 B	300 B	270 B	280 B	
MANGANESE	MG/KG	0.458	5.5 B	5.1 B	10 B	5.6 B	5.4 B	
MERCURY	MG/KG	0.032	0.013 J	0.012 J	0.017 J	0.014 J	0.014 J	
NICKEL	MG/KG	0.092	0.49	0.52	0.49	0.53	0.51	
POTASSIUM	MG/KG	9.155	1400	1300	1400	1500	1400	
SELENIUM	MG/KG	0.458	0.5	0.51	0.63	0.57	0.51	
SILVER	MG/KG	0.092	0.12	0.099	0.12	0.13	0.12	
SODIUM	MG/KG	9.155	1400	1500	1500	1300	1400	
THALLIUM	MG/KG	0.092	0.0062 J	0.091 U	0.091 U	0.089 U	0.081 U	
VANADIUM	MG/KG	0.092	0.07 J B	0.081 J B	0.074 J B	0.058 J B	0.061 J B	
ZINC	MG/KG	0.458	380	330	380	420	340	
CYANIDE, TOTAL	MG/KG	0.495	0.45 J	0.49 U	0.11 J	0.31 J	0.32 J	

NOTES: Bold values represent detected concentrations.

RL is reported for non-detected constituents.

Tissue concentrations are reported as wet weight

RL = average reporting detection limit

 \mathbf{B} = detected in the laboratory method blank

 \mathbf{J} = compound was detected, but below the reporting limit (value is estimated)

TABLE 6-13. Crassostrea virginica : REPLICATE TISSUE CONCENTRATIONS FOR MILL HILL STATION MH-2 September 2011

			Mill Hill Station MH-2					
						Sample C		
ANALYTE	UNITS	RL	Sample A	Sample B	С	Duplicate	Triplicate	
ALUMINUM	MG/KG	2.750	9.6	19	18	17	18	
ANTIMONY	MG/KG	0.183	0.19 U	0.17 U	0.19 U	0.19 U	0.19 U	
ARSENIC	MG/KG	0.092	1	1.2	1	1.1	0.75	
BARIUM	MG/KG	0.916	0.2 J	0.23 J	0.2 J	0.17 J	0.19 J	
BERYLLIUM	MG/KG	0.092	0.097 U	0.083 U	0.095 U	0.094 U	0.093 U	
CADMIUM	MG/KG	0.092	0.34	0.2	0.2	0.23	0.16	
CALCIUM	MG/KG	9.155	840 B	1100 B	680 B	770 B	650 B	
CHROMIUM	MG/KG	0.183	0.1 J B	0.11 J B	0.14 J B	0.12 J B	0.18 J B	
COBALT	MG/KG	0.046	0.075	0.073	0.068	0.063	0.065	
COPPER	MG/KG	0.183	19	15	11	13	8.1	
IRON	MG/KG	4.583	44	60	50	50	45	
LEAD	MG/KG	0.092	0.049 J B	0.075 J B	0.066 J B	0.063 J B	0.056 J B	
MAGNESIUM	MG/KG	9.155	290 B	280 B	270 B	270 B	260 B	
MANGANESE	MG/KG	0.458	6 B	9.3 B	8.9 B	8.9 B	7.9 B	
MERCURY	MG/KG	0.032	0.013 J	0.014 J	0.014 J	0.016 J	0.012 J	
NICKEL	MG/KG	0.092	0.47	0.5	0.54	0.54	0.51	
POTASSIUM	MG/KG	9.155	1400	1500	1300	1400	1200	
SELENIUM	MG/KG	0.458	0.58	0.68	0.55	0.54	0.46	
SILVER	MG/KG	0.092	0.16	0.16	0.11	0.13	0.1	
SODIUM	MG/KG	9.155	1500	1300	1400	1300	1400	
THALLIUM	MG/KG	0.092	0.097 U	0.083 U	0.095 U	0.094 U	0.093 U	
VANADIUM	MG/KG	0.092	0.12 B	0.11 B	0.099 B	0.065 J B	0.084 J B	
ZINC	MG/KG	0.458	500	280	200	240	250	
CYANIDE, TOTAL	MG/KG	0.495	0.36 J	0.5 U	0.11 J	0.13 J	0.48 U	

NOTES: Bold values represent detected concentrations.

RL is reported for non-detected constituents.

Tissue concentrations are reported as wet weight

RL = average reporting detection limit

 \mathbf{B} = detected in the laboratory method blank

 \mathbf{J} = compound was detected, but below the reporting limit (value is estimated)

TABLE 6-14. Crassostrea virginica : REPLICATE TISSUE CONCENTRATIONS FOR MILL HILL STATION MH-3 September 2011

			Mill Hill Station MH-3					
						Sample C		
ANALYTE	UNITS	RL	Sample A	Sample B	С	Duplicate	Triplicate	
ALUMINUM	MG/KG	2.750	64	41	31	54	46	
ANTIMONY	MG/KG	0.183	0.18 U	0.11 J	0.015 J	0.0062 J	0.19 U	
ARSENIC	MG/KG	0.092	1	0.88	0.9	1.3	0.78	
BARIUM	MG/KG	0.916	0.53 J	0.33 J	0.23 J	0.6 J	0.28 J	
BERYLLIUM	MG/KG	0.092	0.088 U	0.083 U	0.088 U	0.092 U	0.093 U	
CADMIUM	MG/KG	0.092	0.22	0.19	0.2	0.23	0.15	
CALCIUM	MG/KG	9.155	3700 B	2100 B	1400 B	3800 B	990 B	
CHROMIUM	MG/KG	0.183	0.29 B	0.19 B	0.15 J B	0.27 B	0.2 B	
COBALT	MG/KG	0.046	0.094	0.083	0.079	0.1	0.076	
COPPER	MG/KG	0.183	8.3	8	7.4	10	5.9	
IRON	MG/KG	4.583	110	80	65	110	83	
LEAD	MG/KG	0.092	0.14 B	0.1 B	0.084 J B	0.14 B	0.11 B	
MAGNESIUM	MG/KG	9.155	320 B	300 B	290 B	360 B	300 B	
MANGANESE	MG/KG	0.458	20 B	14 B	13 B	24 B	15 B	
MERCURY	MG/KG	0.032	0.032 U	0.013 J	0.012 J	0.014 J	0.013 J	
NICKEL	MG/KG	0.092	0.58	0.51	0.53	0.58	0.58	
POTASSIUM	MG/KG	9.155	1400	1400	1400	1500	1200	
SELENIUM	MG/KG	0.458	0.56	0.52	0.5	0.68	0.44 J	
SILVER	MG/KG	0.092	0.1	0.1	0.092	0.13	0.073 J	
SODIUM	MG/KG	9.155	1400	1400	1400	1400	1600	
THALLIUM	MG/KG	0.092	0.088 U	0.083 U	0.0072 J	0.0055 J	0.0024 J	
VANADIUM	MG/KG	0.092	0.18 B	0.099 B	0.14 B	0.17 B	0.18 B	
ZINC	MG/KG	0.458	170	170	200	210	120	
CYANIDE, TOTAL	MG/KG	0.495	0.12 J	0.15 J	0.28 J	0.22 J	0.5 U	

NOTES: Bold values represent detected concentrations.

RL is reported for non-detected constituents.

Tissue concentrations are reported as wet weight

RL = average reporting detection limit

 \mathbf{B} = detected in the laboratory method blank

 \mathbf{J} = compound was detected, but below the reporting limit (value is estimated)

TABLE 6-15. Crassostrea virginica : REPLICATE TISSUE CONCENTRATIONS FOR MILL HILL STATION MH-4 September 2011

			Mill Hill Station MH-4					
						Sample C		
ANALYTE	UNITS	RL	Sample A	Sample B	С	Duplicate	Triplicate	
ALUMINUM	MG/KG	2.750	12	26	13	20	20	
ANTIMONY	MG/KG	0.183	0.19 U	0.19 U	0.18 U	0.13 J	0.025 J	
ARSENIC	MG/KG	0.092	0.94	1	0.91	0.97	1.1	
BARIUM	MG/KG	0.916	0.15 J	0.27 J	0.13 J	0.24 J	0.22 J	
BERYLLIUM	MG/KG	0.092	0.095 U	0.097 U	0.091 U	0.096 U	0.086 U	
CADMIUM	MG/KG	0.092	0.24	0.24	0.19	0.21	0.24	
CALCIUM	MG/KG	9.155	1100 B	1600 B	620 B	1500 B	730 B	
CHROMIUM	MG/KG	0.183	0.11 J B	0.23 B	0.12 J B	0.14 J B	0.11 J B	
COBALT	MG/KG	0.046	0.07	0.074	0.053	0.057	0.076	
COPPER	MG/KG	0.183	8.5	8.6	8.3	7.7	7.9	
IRON	MG/KG	4.583	36	57	37	48	51	
LEAD	MG/KG	0.092	0.054 J B	0.084 J B	0.056 J B	0.075 J B	0.069 J B	
MAGNESIUM	MG/KG	9.155	280 B	280 B	260 B	280 B	290 B	
MANGANESE	MG/KG	0.458	6.5 B	11 B	7.3 B	8.2 B	8.5 B	
MERCURY	MG/KG	0.032	0.012 J	0.012 J	0.013 J	0.012 J	0.014 J	
NICKEL	MG/KG	0.092	0.48	0.52	0.46	0.48	0.53	
POTASSIUM	MG/KG	9.155	1400	1400	1300	1300	1500	
SELENIUM	MG/KG	0.458	0.52	0.55	0.49	0.51	0.58	
SILVER	MG/KG	0.092	0.1	0.097	0.083 J	0.088 J	0.089	
SODIUM	MG/KG	9.155	1400	1300	1300	1400	1300	
THALLIUM	MG/KG	0.092	0.095 U	0.097 U	0.091 U	0.096 U	0.086 U	
VANADIUM	MG/KG	0.092	0.06 J B	0.12 B	0.072 J B	0.1 B	0.12 B	
ZINC	MG/KG	0.458	250	210	190	180	240	
CYANIDE, TOTAL	MG/KG	0.495	0.11 J	0.13 J	0.51 U	0.15 J	0.49 U	

NOTES: Bold values represent detected concentrations.

RL is reported for non-detected constituents.

Tissue concentrations are reported as wet weight

RL = average reporting detection limit

 \mathbf{B} = detected in the laboratory method blank

J = compound was detected, but below the reporting limit (value is estimated)

TABLE 6-16. Crassostrea virginica : REPLICATE TISSUE CONCENTRATIONS FOR MILL HILL STATION MH-5 September 2011

			Mill Hill Station MH-5					
						Sample C		
ANALYTE	UNITS	RL	Sample A	Sample B	С	Duplicate	Triplicate	
ALUMINUM	MG/KG	2.750	13	15	50	8	12	
ANTIMONY	MG/KG	0.183	0.015 J	0.0049 J	0.004 J	0.18 U	0.2 U	
ARSENIC	MG/KG	0.092	0.97	0.9	0.82	0.81	0.92	
BARIUM	MG/KG	0.916	0.2 J	0.2 J	0.21 J	0.15 J	0.16 J	
BERYLLIUM	MG/KG	0.092	0.093 U	0.089 U	0.1 U	0.092 U	0.098 U	
CADMIUM	MG/KG	0.092	0.21	0.18	0.14	0.22	0.16	
CALCIUM	MG/KG	9.155	410 B	1200 B	390 B	580 B	680 B	
CHROMIUM	MG/KG	0.183	0.073 J	0.12 J	0.13 J	0.078 J	0.063 J	
COBALT	MG/KG	0.046	0.1	0.098	0.67	0.069	0.067	
COPPER	MG/KG	0.183	13	14	7.6	7.9	4.4	
IRON	MG/KG	4.583	49	49	150	37	41	
LEAD	MG/KG	0.092	0.056 J B	0.058 J B	0.083 J B	0.042 J B	0.056 J B	
MAGNESIUM	MG/KG	9.155	300 B	290 B	400 B	270 B	290 B	
MANGANESE	MG/KG	0.458	7.7 B	9.4 B	10 B	4.2 B	6.3 B	
MERCURY	MG/KG	0.032	0.014 J	0.014 J	0.013 J	0.015 J	0.011 J	
NICKEL	MG/KG	0.092	0.53	0.55	0.61	0.48	0.52	
POTASSIUM	MG/KG	9.155	1300	1300	1100	1100	1400	
SELENIUM	MG/KG	0.458	0.58	0.47	0.41 J	0.43 J	0.6	
SILVER	MG/KG	0.092	0.16	0.14	0.086 J	0.086 J	0.098	
SODIUM	MG/KG	9.155	1500	1500	1500	1400	1500	
THALLIUM	MG/KG	0.092	0.0053 J	0.0021 J	0.1 U	0.092 U	0.098 U	
VANADIUM	MG/KG	0.092	0.045 J	0.072 J	0.15	0.031 J	0.059 J	
ZINC	MG/KG	0.458	430 B	400 B	170 B	260 B	210 B	
CYANIDE. TOTAL	MG/KG	0.495	051U	0 48 U	0.48 U	0.42 J	048 U	

NOTES: Bold values represent detected concentrations.

RL is reported for non-detected constituents.

Tissue concentrations are reported as wet weight

RL = average reporting detection limit

 \mathbf{B} = detected in the laboratory method blank

J = compound was detected, but below the reporting limit (value is estimated)

TABLE 6-17. Crassostrea virginica : REPLICATE TISSUE CONCENTRATIONS FOR MILL HILL STATION MH-6 September 2011

			Mill Hill Station MH-6					
						Sample C		
ANALYTE	UNITS	RL	Sample A	Sample B	С	Duplicate	Triplicate	
ALUMINUM	MG/KG	2.750	20	17	11	13	19	
ANTIMONY	MG/KG	0.183	0.19 U	0.12 J	0.028 J	0.013 J	0.008 J	
ARSENIC	MG/KG	0.092	1	0.95	1	1.1	0.97	
BARIUM	MG/KG	0.916	0.28 J	0.25 J	0.17 J	0.22 J	0.23 J	
BERYLLIUM	MG/KG	0.092	0.097 U	0.095 U	0.087 U	0.092 U	0.098 U	
CADMIUM	MG/KG	0.092	0.29	0.21	0.23	0.32	0.26	
CALCIUM	MG/KG	9.155	2400 B	1700 B	580 B	1400 B	740 B	
CHROMIUM	MG/KG	0.183	0.1 J	0.12 J	0.051 J	0.077 J	0.054 J	
COBALT	MG/KG	0.046	0.099	0.074	0.072	0.1	0.094	
COPPER	MG/KG	0.183	7.9	7.6	11	9.6	7	
IRON	MG/KG	4.583	69	74	46	62	57	
LEAD	MG/KG	0.092	0.066 J B	0.062 J B	0.053 J B	0.059 J B	0.069 J B	
MAGNESIUM	MG/KG	9.155	300 B	290 B	270 B	300 B	290 B	
MANGANESE	MG/KG	0.458	9.4 B	10 B	6.5 B	7.2 B	8.2 B	
MERCURY	MG/KG	0.032	0.032 U	0.013 J	0.01 J	0.016 J	0.014 J	
NICKEL	MG/KG	0.092	0.48	0.52	0.47	0.49	0.53	
POTASSIUM	MG/KG	9.155	1400	1300	1300	1400	1400	
SELENIUM	MG/KG	0.458	0.64	0.52	0.55	0.64	0.65	
SILVER	MG/KG	0.092	0.12	0.1	0.11	0.11	0.098	
SODIUM	MG/KG	9.155	1400	1400	1300	1400	1400	
THALLIUM	MG/KG	0.092	0.097 U	0.095 U	0.087 U	0.092 U	0.098 U	
VANADIUM	MG/KG	0.092	0.14	0.082 J	0.083 J	0.093	0.095 J	
ZINC	MG/KG	0.458	370 B	230 B	330 B	410 B	290 B	
CYANIDE, TOTAL	MG/KG	0.495	0.49 U	0.5 U	0.48 U	0.5 U	0.52 U	

NOTES: Bold values represent detected concentrations.

RL is reported for non-detected constituents.

Tissue concentrations are reported as wet weight

RL = average reporting detection limit

 \mathbf{B} = detected in the laboratory method blank

 \mathbf{J} = compound was detected, but below the reporting limit (value is estimated)

TABLE 6-18. Crassostrea virginica : REPLICATE TISSUE CONCENTRATIONS FOR MILL HILL STATION MH-7 September 2011

				Mi	ill Hill Station MH-7				
						Sample C			
ANALYTE	UNITS	RL	Sample A	Sample B	С	Duplicate	Triplicate		
ALUMINUM	MG/KG	2.750	14	12	14	23	19		
ANTIMONY	MG/KG	0.183	0.2 U	0.18 U	0.17 U	0.18 U	0.18 U		
ARSENIC	MG/KG	0.092	0.76	0.81	1	0.93	0.96		
BARIUM	MG/KG	0.916	0.15 J	0.16 J	0.17 J	0.32 J	0.48 J		
BERYLLIUM	MG/KG	0.092	0.098 U	0.088 U	0.083 U	0.091 U	0.088 U		
CADMIUM	MG/KG	0.092	0.16	0.19	0.26	0.24	0.3		
CALCIUM	MG/KG	9.155	610 B	800 B	680 B	3400 B	1900 B		
CHROMIUM	MG/KG	0.183	0.059 J	0.032 J	0.0067 J	0.079 J	0.07 J		
COBALT	MG/KG	0.046	0.094	0.095	0.097	0.092	0.1		
COPPER	MG/KG	0.183	5.2	5.5	6.5	10	8.7		
IRON	MG/KG	4.583	40	40	47	62	53		
LEAD	MG/KG	0.092	0.055 J B	0.05 J B	0.057 J B	0.078 J B	0.067 J B		
MAGNESIUM	MG/KG	9.155	280 B	290 B	270 B	300 B	300 B		
MANGANESE	MG/KG	0.458	6 B	5.8 B	6.2 B	11 B	15 B		
MERCURY	MG/KG	0.032	0.014 J	0.011 J	0.014 J	0.015 J	0.014 J		
NICKEL	MG/KG	0.092	0.53	0.54	0.46	0.48	0.51		
POTASSIUM	MG/KG	9.155	1300	1400	1400	1400	1400		
SELENIUM	MG/KG	0.458	0.58	0.45	0.47	0.54	0.58		
SILVER	MG/KG	0.092	0.11	0.09	0.078 J	0.095	0.097		
SODIUM	MG/KG	9.155	1500	1500	1300	1400	1400		
THALLIUM	MG/KG	0.092	0.098 U	0.088 U	0.083 U	0.091 U	0.088 U		
VANADIUM	MG/KG	0.092	0.073 J	0.055 J	0.052 J	0.089 J	0.068 J		
ZINC	MG/KG	0.458	330 B	230 B	270 B	290 B	400 B		
CYANIDE, TOTAL	MG/KG	0.495	0.49 U	0.51 U	0.16 J	0.13 J	0.51 U		

NOTES: Bold values represent detected concentrations.

RL is reported for non-detected constituents.

Tissue concentrations are reported as wet weight

RL = average reporting detection limit

 \mathbf{B} = detected in the laboratory method blank

 \mathbf{J} = compound was detected, but below the reporting limit (value is estimated)

TABLE 6-19. Crassostrea virginica : REPLICATE TISSUE CONCENTRATIONS FOR SEVERN RIVERSTATION WEEMS CREEK UPPER

October 2011

			Severn River Station Weems Creek Upper						
						Sample C			
ANALYTE	UNITS	RL	Sample A	Sample B	С	Duplicate	Triplicate		
ALUMINUM	MG/KG	2.757	19	8.6	16	16	12		
ANTIMONY	MG/KG	0.183	0.0065 J	0.18 U	0.19 U	0.2 U	0.19 U		
ARSENIC	MG/KG	0.092	0.87	0.66	0.74	0.7	0.77		
BARIUM	MG/KG	0.916	0.17 J	0.092 J	0.19 J	0.18 J	0.12 J		
BERYLLIUM	MG/KG	0.092	0.092 U	0.09 U	0.093 U	0.099 U	0.094 U		
CADMIUM	MG/KG	0.092	0.53	0.4	0.5	0.44	0.47		
CALCIUM	MG/KG	9.157	830	340	1000	1200	770		
CHROMIUM	MG/KG	0.183	0.2 B	0.14 J B	0.17 J B	0.23 B	0.13 J B		
COBALT	MG/KG	0.046	0.052	0.039 J	0.045 J	0.052	0.045 J		
COPPER	MG/KG	0.183	47	26	51	38	47		
IRON	MG/KG	4.587	70	38	60	57	45		
LEAD	MG/KG	0.092	0.097	0.056 J	0.082 J	0.079 J	0.069 J		
MAGNESIUM	MG/KG	9.157	200 B	190 B	200 B	210 B	200 B		
MANGANESE	MG/KG	0.459	6.4	3.9	7.3	7	4.7		
MERCURY	MG/KG	0.033	0.032 U	0.031 U	0.033 U	0.03 U	0.031 U		
NICKEL	MG/KG	0.092	0.43	0.48	0.51	0.47	0.44		
POTASSIUM	MG/KG	9.157	890	850	810	880	910		
SELENIUM	MG/KG	0.459	0.46	0.36 J	0.4 J	0.41 J	0.4 J		
SILVER	MG/KG	0.092	0.29	0.25	0.29	0.28	0.28		
SODIUM	MG/KG	9.157	650	700	700	730	700		
THALLIUM	MG/KG	0.092	0.092 U	0.09 U	0.093 U	0.099 U	0.094 U		
VANADIUM	MG/KG	0.092	0.049 J	0.02 J	0.032 J	0.099 U	0.094 U		
ZINC	MG/KG	0.459	430 B	380 B	400 B	450 B	440 B		
CYANIDE, TOTAL	MG/KG	0.492	0.16 J	0.21 J	0.49 U	0.48 U	0.83		

NOTES: Bold values represent detected concentrations.

RL is reported for non-detected constituents.

Tissue concentrations are reported as wet weight

RL = average reporting detection limit

 \mathbf{B} = detected in the laboratory method blank

 \mathbf{J} = compound was detected, but below the reporting limit (value is estimated)

TABLE 6-20. Crassostrea virginica : REPLICATE TISSUE CONCENTRATIONS FOR SEVERN RIVER STATION WADE 2-2

October 2011

			Severn River Station WADE 2-2						
						Sample C			
ANALYTE	UNITS	RL	Sample A	Sample B	С	Duplicate	Triplicate		
ALUMINUM	MG/KG	2.757	30	17	17	20	20		
ANTIMONY	MG/KG	0.183	0.025 J B	0.013 J B	0.0048 J B	0.0056 J B	0.005 J B		
ARSENIC	MG/KG	0.092	0.88	0.82	0.7	0.87	0.74		
BARIUM	MG/KG	0.916	0.59 J	0.22 J	0.2 J	0.21 J	0.2 J		
BERYLLIUM	MG/KG	0.092	0.094 U	0.093 U	0.095 U	0.087 U	0.099 U		
CADMIUM	MG/KG	0.092	0.54	0.43	0.43	0.51	0.35		
CALCIUM	MG/KG	9.157	6600	1900	1600	1100	1100		
CHROMIUM	MG/KG	0.183	0.3 B	0.17 J B	0.42 B	0.18 B	0.18 J B		
COBALT	MG/KG	0.046	0.074	0.055	0.056	0.059	0.056		
COPPER	MG/KG	0.183	34	29	26	32	24		
IRON	MG/KG	4.587	120	78	110	95	92		
LEAD	MG/KG	0.092	0.14 B	0.1 B	0.092 J B	0.12 B	0.11 B		
MAGNESIUM	MG/KG	9.157	280 B	230 B	250 B	220 B	230 B		
MANGANESE	MG/KG	0.459	16	7.5	13	7.9	7.6		
MERCURY	MG/KG	0.033	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U		
NICKEL	MG/KG	0.092	0.53	0.58	0.55	0.53	0.59		
POTASSIUM	MG/KG	9.157	880	840	840	940	810		
SELENIUM	MG/KG	0.459	0.45 J	0.39 J	0.37 J	0.44	0.38 J		
SILVER	MG/KG	0.092	0.21	0.2	0.18	0.19	0.17		
SODIUM	MG/KG	9.157	710	710	720	670	750		
THALLIUM	MG/KG	0.092	0.0067 J	0.0036 J	0.002 J	0.0019 J	0.099 U		
VANADIUM	MG/KG	0.092	0.087 J	0.093	0.24	0.087 U	0.099 U		
ZINC	MG/KG	0.459	350	300	310	320	270		
CYANIDE, TOTAL	MG/KG	0.492	0.42 J	0.19 J	0.51 U	0.35 J	0.64		

NOTES: Bold values represent detected concentrations.

RL is reported for non-detected constituents.

Tissue concentrations are reported as wet weight

RL = average reporting detection limit

 \mathbf{B} = detected in the laboratory method blank

J = compound was detected, but below the reporting limit (value is estimated)

TABLE 6-21. Crassostrea virginica : REPLICATE TISSUE CONCENTRATIONS FOR SEVERN RIVER STATION WADE 2-3 October 2011

			Severn River Station Wade 2-3							
						Sample C				
ANALYTE	UNITS	RL	Sample A	Sample B	С	Duplicate	Triplicate			
ALUMINUM	MG/KG	2.757	28	43	31	35	60			
ANTIMONY	MG/KG	0.183	0.0047 J B	0.0046 J B	0.19 U	0.12 J B	0.019 J B			
ARSENIC	MG/KG	0.092	0.83	1.2	0.61	0.75	0.87			
BARIUM	MG/KG	0.916	0.2 J	0.22 J	0.19 J	0.18 J	0.29 J			
BERYLLIUM	MG/KG	0.092	0.086 U	0.084 U	0.097 U	0.09 U	0.0075 J			
CADMIUM	MG/KG	0.092	0.57	0.63	0.53	0.57	0.53			
CALCIUM	MG/KG	9.157	1300	410	320	310	510			
CHROMIUM	MG/KG	0.183	0.21 B	0.28 B	0.32 B	0.25 B	0.4 B			
COBALT	MG/KG	0.046	0.11	0.14	0.1	0.12	0.14			
COPPER	MG/KG	0.183	66	71	51	39	68			
IRON	MG/KG	4.587	120	180	140	160	230			
LEAD	MG/KG	0.092	0.15 B	0.2 B	0.15 B	0.17 B	0.23 B			
MAGNESIUM	MG/KG	9.157	210 B	220 B	200 B	200 B	200 B			
MANGANESE	MG/KG	0.459	6.7	9.7	7	8.3	10			
MERCURY	MG/KG	0.033	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U			
NICKEL	MG/KG	0.092	0.52	0.53	0.56	0.51	0.56			
POTASSIUM	MG/KG	9.157	920	870	710	810	820			
SELENIUM	MG/KG	0.459	0.43	0.48	0.34 J	0.42 J	0.45			
SILVER	MG/KG	0.092	0.42	0.38	0.36	0.39	0.37			
SODIUM	MG/KG	9.157	690	670	730	670	640			
THALLIUM	MG/KG	0.092	0.086 U	0.084 U	0.097 U	0.09 U	0.0081 J			
VANADIUM	MG/KG	0.092	0.12	0.14	0.13	0.13	0.21			
ZINC	MG/KG	0.459	630	630	570	660	560			
			-							
CYANIDE. TOTAL	MG/KG	0.492	0.73	0.5 U	0.36 J	0.43 J	1.4			

NOTES: Bold values represent detected concentrations.

RL is reported for non-detected constituents.

Tissue concentrations are reported as wet weight

RL = average reporting detection limit

 \mathbf{B} = detected in the laboratory method blank

J = compound was detected, but below the reporting limit (value is estimated)

TABLE 6-22. Crassostrea virginica : REPLICATE TISSUE CONCENTRATIONS FOR SEVERN RIVER STATION WADE 2-4 October 2011

			Severn River Station Wade 2-4							
						Sample C				
ANALYTE	UNITS	RL	Sample A	Sample B	С	Duplicate	Triplicate			
ALUMINUM	MG/KG	2.757	26	25	29	23	11			
ANTIMONY	MG/KG	0.183	0.0072 J B	0.0037 J B	0.0032 J B	0.19 U	0.18 U			
ARSENIC	MG/KG	0.092	0.75	0.82	0.86	0.83	0.5			
BARIUM	MG/KG	0.916	0.3 J	0.66 J	0.36 J	0.25 J	0.12 J			
BERYLLIUM	MG/KG	0.092	0.099 U	0.092 U	0.089 U	0.096 U	0.088 U			
CADMIUM	MG/KG	0.092	0.49	0.63	0.6	0.52	0.3			
CALCIUM	MG/KG	9.157	1400	11000	3600	1600	390			
CHROMIUM	MG/KG	0.183	0.36 B	0.23 B	0.28 B	0.24 B	0.17 J B			
COBALT	MG/KG	0.046	0.061	0.067	0.068	0.058	0.036 J			
COPPER	MG/KG	0.183	33	35	31	32	19			
IRON	MG/KG	4.587	97	99	110	93	43			
LEAD	MG/KG	0.092	0.12 B	0.14 B	0.14 B	0.12 B	0.072 J B			
MAGNESIUM	MG/KG	9.157	220 B	300 B	240 B	210 B	200 B			
MANGANESE	MG/KG	0.459	12	12	11	9.5	6.9			
MERCURY	MG/KG	0.033	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U			
NICKEL	MG/KG	0.092	0.63	0.47	0.52	0.52	0.63			
POTASSIUM	MG/KG	9.157	820	860	920	940	630			
SELENIUM	MG/KG	0.459	0.43 J	0.46	0.42 J	0.48	0.29 J			
SILVER	MG/KG	0.092	0.18	0.2	0.19	0.19	0.099			
SODIUM	MG/KG	9.157	730	690	660	630	850			
THALLIUM	MG/KG	0.092	0.005 J	0.0024 J	0.002 J	0.096 U	0.088 U			
VANADIUM	MG/KG	0.092	0.044 J	0.13	0.057 J	0.057 J	0.043 J			
ZINC	MG/KG	0.459	290	330	310	320	190			
CYANIDE. TOTAL	MG/KG	0.492	0.2 J	0.23 J	0.41 J	0.52	0.1 J			

NOTES: Bold values represent detected concentrations.

RL is reported for non-detected constituents.

Tissue concentrations are reported as wet weight

RL = average reporting detection limit

 \mathbf{B} = detected in the laboratory method blank

J = compound was detected, but below the reporting limit (value is estimated)

TABLE 6-23. Crassostrea virginica : REPLICATE TISSUE CONCENTRATIONS FOR SEVERN RIVER STATION WADE 2-5 October 2011

				Severn	River Station	Wade 2-5	
						Sample C	
ANALYTE	UNITS	RL	Sample A	Sample B	С	Duplicate	Triplicate
ALUMINUM	MG/KG	2.757	23	22	11	22	12
ANTIMONY	MG/KG	0.183	0.12 J B	0.027 J B	0.01 J B	0.0057 J B	0.17 U
ARSENIC	MG/KG	0.092	0.87	0.82	0.51	0.86	0.75
BARIUM	MG/KG	0.916	0.22 J	0.24 J	0.13 J	0.27 J	0.15 J
BERYLLIUM	MG/KG	0.092	0.085 U	0.091 U	0.085 U	0.088 U	0.087 U
CADMIUM	MG/KG	0.092	0.45	0.5	0.33	0.53	0.37
CALCIUM	MG/KG	9.157	980	1300	430	1300	450
CHROMIUM	MG/KG	0.183	0.2 B	0.23 B	0.21 B	0.37 B	0.25 B
COBALT	MG/KG	0.046	0.059	0.061	0.038 J	0.063	0.045
COPPER	MG/KG	0.183	25	36	21	27	24
IRON	MG/KG	4.587	91	97	48	93	57
LEAD	MG/KG	0.092	0.12 B	0.16 B	0.068 J B	0.12 B	0.082 J B
MAGNESIUM	MG/KG	9.157	200 B	200 B	200 B	220 B	200 B
MANGANESE	MG/KG	0.459	11	11	6.9	13	8.7
MERCURY	MG/KG	0.033	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U
NICKEL	MG/KG	0.092	0.52	0.53	0.66	0.56	0.56
POTASSIUM	MG/KG	9.157	860	900	620	830	780
SELENIUM	MG/KG	0.459	0.44	0.43 J	0.34 J	0.42 J	0.37 J
SILVER	MG/KG	0.092	0.18	0.23	0.12	0.22	0.16
SODIUM	MG/KG	9.157	650	650	850	700	740
THALLIUM	MG/KG	0.092	0.085 U	0.091 U	0.085 U	0.088 U	0.087 U
VANADIUM	MG/KG	0.092	0.052 J	0.078 J	0.085 U	0.068 J	0.087 U
ZINC	MG/KG	0.459	300	320	190	330	260
CYANIDE, TOTAL	MG/KG	0.492	0.38 J	0.9	0.28 J	0.17 J	0.27 J

NOTES: Bold values represent detected concentrations.

RL is reported for non-detected constituents.

Tissue concentrations are reported as wet weight

RL = average reporting detection limit

 \mathbf{B} = detected in the laboratory method blank

J = compound was detected, but below the reporting limit (value is estimated)

TABLE 6-24. Crassostrea virginica : REPLICATE TISSUE CONCENTRATIONS FOR SEVERN RIVER STATION WEEMS UPPER

October 2011

			Severn River Station Weems Upper						
						Sample C			
ANALYTE	UNITS	RL	Sample A	Sample B	С	Duplicate	Triplicate		
ALUMINUM	MG/KG	2.757	13	17	19	14	17		
ANTIMONY	MG/KG	0.183	0.0098 J	0.03 J	0.015 J	0.01 J	0.0041 J		
ARSENIC	MG/KG	0.092	0.72	0.91	0.77	0.63	0.7		
BARIUM	MG/KG	0.916	0.12 J	0.42 J	0.2 J	0.13 J	0.14 J		
BERYLLIUM	MG/KG	0.092	0.095 U	0.093 U	0.097 U	0.094 U	0.09 U		
CADMIUM	MG/KG	0.092	0.4	0.56	0.43	0.32	0.42		
CALCIUM	MG/KG	9.157	540	8900	1400	600	500		
CHROMIUM	MG/KG	0.183	0.15 J B	0.17 J B	0.25 B	0.18 J B	0.16 J B		
COBALT	MG/KG	0.046	0.041 J	0.051	0.048 J	0.039 J	0.044 J		
COPPER	MG/KG	0.183	26	46	21	18	17		
IRON	MG/KG	4.587	53	66	67	51	60		
LEAD	MG/KG	0.092	0.074 J	0.093	0.089 J	0.068 J	0.077 J		
MAGNESIUM	MG/KG	9.157	190 B	230 B	210 B	200 B	200 B		
MANGANESE	MG/KG	0.459	5.6	8.2	7.7	6.1	5.8		
MERCURY	MG/KG	0.033	0.032 U	0.033 U	0.033 U	0.033 U	0.031 U		
NICKEL	MG/KG	0.092	0.52	0.49	0.5	0.55	0.49		
POTASSIUM	MG/KG	9.157	800	870	900	790	870		
SELENIUM	MG/KG	0.459	0.37 J	0.48	0.47 J	0.32 J	0.38 J		
SILVER	MG/KG	0.092	0.17	0.21	0.2	0.14	0.15		
SODIUM	MG/KG	9.157	730	720	680	770	710		
THALLIUM	MG/KG	0.092	0.0071 J	0.0078 J	0.0034 J	0.002 J	0.09 U		
VANADIUM	MG/KG	0.092	0.012 J	0.093 U	0.027 J	0.036 J	0.09 U		
ZINC	MG/KG	0.459	270 B	320 B	290 B	230 B	260 B		
CYANIDE, TOTAL	MG/KG	0.492	0.36 J	0.51	0.31 J	0.14 J	0.11 J		

NOTES: Bold values represent detected concentrations.

RL is reported for non-detected constituents.

Tissue concentrations are reported as wet weight

RL = average reporting detection limit

 \mathbf{B} = detected in the laboratory method blank

 \mathbf{J} = compound was detected, but below the reporting limit (value is estimated)

TABLE 6-25. DIVER'S OBSERVATIONS OF MILL HILL REEFSSeptember 2011

			Sta	tions			
MH Reference	MH-1	MH-2	MH-3	MH-4	MH-5	MH-6	MH-7
Restored Oyster Shell Reef	6" oyster shell (3" fines, 3" shell)	3" shell with 6" slag base	3" shell with 6" stone base	3" shell with 6" concrete rubble base	6" recycled concrete	6" slag	6" stone
Very similar to other shell sites	Blue crabs, anemones, and jellies present	Reef covered in broken shell	Some areas of reef completely covered by	Alternate substrate covered in barnacles and	Some fish present (gobies)	Lots of mussels present	Lots of small fish (gobies) present
Very few single		Blue crabs and	shell; edges of	mussels	Lots of jellies	Blue crabs and	Lots of mud crabs
oysters	Similar to reef MH-2 but more	anemones present	reef—no shell bare stone	Few fish and blue	present	anemones present	present
Blue crabs and	oysters present	1		crabs present	Alternates	Alternate	Substrate covered
jellies present		Most oysters	Blue crabs, mud	_	substrate	substrate covered	in mussels and
	Single oysters as	present	crabas, mussels,	Few single oysters	encrusted with	in barnacles	barnacles
Not many mussels	opposed to	recovered	and barnacles	– majority in	mussels,		
and barnacles	clumps		present	clumps – high	barnacles, and	Many gobies and	Anemones and
present	NY 1			density	anemones	blennies present	jellies present
	No mussels		Fewer oysters				T (C 1' C
No fish present	present		than MH-1		sediment on		site - not flat
Sandy around edge			Oysters found in		substrate		
of reef; main area			clumps not				
covered in shell			singles				
			Very few large oysters				

TABLE 6-26. DIVER'S OBSERVATIONS OF SEVERN RIVER REEFSOctober 2011

		Stati	ons		
WCU	Wade 2-2	Wade 2-3	Wade 2-4	Wade 2-5	WU
Recovered Oyster Shell	Concrete, Stone, and Slag	Slag	Concrete	Stone	Stone with Oyster Shell Venner
Muddy – deep sediment with shell	Blue crabs present Southwest corner of the reef (outside of the study area) a reef of large oysters is present	Reef 2-5 ft shallower than others More relief present – not flat Blue crabs present Oysters concentrated in troughs of substrate	< 1 ft of visibility Sedimentation present	Small barnacles present on alternate substrate Some algae present Low visibility < 1 ft Oysters wedged between alternate substrate	Lots of shell – area covered Filamentous algae present Oysters concentrated in troughs

TABLE 6-27. IN SITU WATER QUALITY FOR TRAY PLACEMENT AT THE WADE PLOT IN THE SEVERN RIVERMay 2011

	Substrate				Location		Water	Sample	Temperature	Salinity	Dissolved		Turbidity
Plot Name	Туре	Location ID	Date	Time	Latitude (N°)	Longitude (W ^o)	Depth (ft)	Depth (ft)	(C ⁰)	(ppt)	Oxygen (mg/L)	рН	(NTU)
	Stone with		5/10/2011				10	Surface	18.33	1.87	11.46	9.13	7.6
Weems	oyster shell veneer	Weems Upper	5/10/2011	0922	38° 59' 56"	076° 29' 48"	10	Bottom	18.3	2.41	8.8	8.73	28.2
Wada	Slag	Wada 2.2	5/10/2011	1129	200 002 002	$0.7(^{\circ}, 0.0), 0.4)$	17	Surface	18.61	1.73	11.86	9.07	7.8
wade	Slag	wade 2-5	5/10/2011	1126	39 00 09	076 00 04	17	Bottom	18.31	2.32	9.57	8.84	21.1
Wada	Comonata	Wada 2.4	5/10/2011	1021	200 001 001	$0.7(^{\circ})$ 202 012	10	Surface	18.42	1.76	11.79	9.14	7
wade	Concrete	wade 2-4	3/10/2011	1031	39 00 08"	0/6 30 01	10	Bottom	18.26	2.42	8.79	8.74	8.4
Wada	Stone	Wada 2.5	5/10/2011	1109	200 002 002	07(0 202 022	17	Surface	18.57	1.72	12.03	9.2	7.1
wade	Stone	wade 2-3	3/10/2011	1108	39 00 09	076 30 03	17	Bottom	18.22	2.42	8.51	8.72	11.4

TABLE 6-28. SPECIES COUNT AND PERCENT COVER FROM TRAYS AT WADE 2-3September 2011

	Species	Tray 1		Tray 2		Tray 3		Tray 4		Totals
BENTHOS		Count	Percent Cover							
Scientific Name	Common Name									
Rhithropanopeus harrisii	Mud crab	150		122		133		112		517
Eurypanopeus depressus	Mud crab	2		0		1		0		3
Polychaeta	Marine worm	4		1		1		2		8
Amphipoda	Scuds	1		0		2		1		4
Palaemonetes sp.	Grass shrimp	4		43		15		2		64
Geukensia demissa	Ribbed mussel	59		86		51		84		280
Mytilopsis leucophaeta	False dark mussel	10		0		10		12		32
Crassostrea virginica	Oyster	0		1		0		0		1
Balanus improvisus	Barnacle		10		30		20		15	
Bryozoa	Ectoproct Bryozoans (encrusting type)		10		20		10		5	
Hydrozoa	Hydroids		0		0		0		0	
FISH										
Gobiosoma bosci	Gobies	24		14		14		9		61
Lepomis sp.	Sunfish	0		0		0		0		0

TABLE 6-29. SPECIES COUNT AND PERCENT COVER FROM TRAYS AT WADE 2-4September 2011

	Species	Tray 1		Tray 2		Tray 3		Tray 4		Totals
BENTHOS		Count	Percent Cover							
Scientific Name	Common Name									
Rhithropanopeus harrisii	Mud crab	168		171		138		126		603
Eurypanopeus depressus	Mud crab	4		0		0		0		4
Polychaeta	Marine worm	27		15		13		0		55
Amphipoda	Scuds	0		0		1		0		1
Palaemonetes sp.	Grass shrimp	0		0		0		0		0
Geukensia demissa	Ribbed mussel	83		55		27		111		276
Mytilopsis leucophaeta	False dark mussel	15		15		5		47		82
Crassostrea virginica	Oyster	43		3		0		0		46
Balanus improvisus	Barnacle		50		30		40		20	
Bryozoa	Ectoproct Bryozoans (encrusting type)		10		10		10		10	
Hydrozoa	Hydroids		5		10		30		10	
FISH										
Gobiosoma bosci	Gobies	48		24		45		20		137
Lepomis sp.	Sunfish	0		0		0		0		0

TABLE 6-30. SPECIES COUNT AND PERCENT COVER FROM TRAYS AT WADE 2-5September 2011

	Species	Tray 1		Tray 2		Tray 3		Tray 4		Totals
BENTHOS		Count	Percent Cover							
Scientific Name	Common Name									
Rhithropanopeus harrisii	Mud crab	148		119		152		124		543
Eurypanopeus depressus	Mud crab	2		2		6		0		10
Polychaeta	Marine worm	2		1		9		3		15
Amphipoda	Scuds	0		0		0		0		0
Palaemonetes sp.	Grass shrimp	19		1		5		16		41
Geukensia demissa	Ribbed mussel	53		91		119		73		336
Mytilopsis leucophaeta	False dark mussel	15		14		28		7		64
Crassostrea virginica	Oyster	1		1		9		8		19
Balanus improvisus	Barnacle		30		20		20		30	
Bryozoa	Ectoproct Bryozoans (encrusting type)		10		20		40		30	
Hydrozoa	Hydroids		0		1		5		0	
FISH										
Gobiosoma bosci	Gobies	29		9		21		18		77
Lepomis sp.	Sunfish	0		0		1		0		1

TABLE 6-31. SPECIES COUNT AND PERCENT COVER FROM TRAYS AT WEEMS UPPER September 2011

Species			Tray 1		Tray 2		Tray 3		Tray 4	
BENTHOS		Count	Percent Cover	Count	Percent Cover	Count	Percent Cover	Count	Percent Cover	
Scientific Name	Common Name			Missing T	ray*					
Rhithropanopeus harrisii	Mud crab	133				60		174		367
Eurypanopeus depressus	Mud crab	0				0		2		2
Polychaeta	Marine worm	20				3		7		30
Amphipoda	Scuds	11				0		26		37
Palaemonetes sp.	Grass shrimp	0				2		2		4
Geukensia demissa	Ribbed mussel	66				151		173		390
Mytilopsis leucophaeta	False dark mussel	11				8		47		66
Crassostrea virginica	Oyster	2				0		1		3
Balanus improvisus	Barnacle		5				20		30	
Bryozoa	Ectoproct Bryozoans (encrusting type)		20				10		20	
Hydrozoa	Hydroids		0				0		0	
FISH										
Gobiosoma bosci	Gobies	7				6		16		29
Lepomis sp.	Sunfish	0				0		0		0

*Divers were unable to locate the tray. Line holding the tray broke and the tray became dislodged.

TABLE 6-32. LENGHTS OF OYSTER RECOVERED FROM TRAYS AT WADE 2-3 (Slag) September 2011

	Tray 1	Notes	Tray 2	Notes	Tray 3	Notes	Tray 4	Notes
Number of Oysters	0		1		0		0	
Length (mm)			48					

TABLE 6-33. LENGHTS OF OYSTER RECOVERED FROM TRAYS AT WADE 2-4 (Concrete) Concrete

September 2011

	Tray 1	Notes	Tray 2	Notes	Tray 3	Notes	Tray 4	Notes
Number of Oysters	43	Most oysters	3	On oyster	0		0	
Length (mm)	41	attached to oyster	13	shell				
	32	shells. Three	12					
	33	attachment marks	41					
	35	were on the						
	35	substrate which						
	42	probably held some						
	45	of the shell clumps						
	38							
	46							
	36							
	33							
	30							
	38	-						
	40							
	26							
	35							
	31							
	33							
	35							
	34							
	20							
	16							
	40							
	36							
	37							
	25							
	36							
	35							
	26							
	28							
	31							
	40							
	35							
	28							
	24							
	34					ļ		
	32					ļ		
	24							
	41							
	51	4						
	42	4						
	51							

TABLE 6-34. LENGHTS OF OYSTER RECOVERED FROM TRAYS AT WADE 2-5 (Stone) September 2011

	Tray 1	Notes	Tray 2	Notes	Tray 3	Notes	Tray 4	Notes
Number of Oysters	1	On	1	On	9	7 attached to	8	Attached
Length (mm)	48	Substrate	71	Substrate	48	oyster shell.	41	to oyster
					50	Last 2	38	shell
					61	attached to	32	
					42	substrate	40	
					48		48	
					42		46	
					45		52	
					70		45	
					51			

TABLE 6-35. LENGHTS OF OYSTER RECOVERED FROM TRAYS AT WEEMS UPPER (Stone with oyster shell veneer) September 2011

	Tray 1	Notes	Tray 2	Notes	Tray 3	Notes	Tray 4	Notes
Number of Oysters	2	Attached to		Missing	0		0	
Length (mm)	16	oyster shell		Tray*				
	38							

*Divers were unable to locate the tray. Line holding the tray broke and the tray became dislodged.

7.0 REFERENCES

- EA Engineering, Science, and Technology (EA). 2011. Field Sampling Plan USACE Chesapeake Bay Oyster Recovery Project, Initial Screening of Oyster Reefs. Prepared for U.S. Army Corps of Engineers Baltimore District.Prepared by EA Engineering, Science, and Technology. March 2011.
- Grubb, D.G., M. Wazne, and N.E. Malasavage. 2010. Characterization of Slag Fines for Use as a Dredged Material Amendment. GeoFlorida 2010: Advances in Analysis, Modeling, and Design, Geotechnical Special Publication No. 199, D. Fratta, A.J. Puppala, and B. Muhunthan (eds.). ASCE, pp. 10.
- Maryland Department of the Environment (MDE). 2009. Standard Operating Procedures for Fish and Shellfish Collection and Analysis. Draft.
- U.S. Environmental Protection Agency (EPA).2000.National Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories. Volume 1: Fish Sampling and Analysis. Third Edition.Office of Water.EPA 823-B-00-007.
- U.S. Environmental Protection Agency (EPA). 2011. National Recommended Water Quality Criteria. Office of Water.

Appendix A Field Sampling Plan

FIELD SAMPLING PLAN

USACE CHESAPEAKE BAY OYSTER RECOVERY PROJECT, INITIAL SCREENING OF OYSTER REEFS

Prepared for

U.S. Army Corps of Engineers Baltimore District 10 South Howard Street Baltimore, Maryland 21201

Prepared by

EA Engineering, Science, and Technology 15 Loveton Circle Sparks, Maryland 21152 (410) 771-4950

March 2011

TABLE OF CONTENTS

LIST LIST	OF FIC OF TA	GURESiii BLES
ABBR	REVIA	FIONS, ACROMNYMS, AND UNITS iv
1.	PROJ	ECT OVERVIEW 1-1
	1.1 1.2 1.3 1.4 1.5	Scope of the Field Sampling Plan1-2Project Purpose and Objectives1-2Project Location1-2Analytical Testing1-3Site-Specific Sampling and Analysis Problems1-3
2.	PROJ	ECT ORGANIZATION AND PERSONNEL2-1
3.	FIELI	D ACTIVITIES
	3.1 3.2 3.3 3.4 3.5	Sampling Objectives3-1Sampling Location Determination3-1Sample Volume Requirements3-2In Situ Water Quality Measurements3-2Sample Collection, Storage, and Transport3-2
		3.5.1Slag Composition
	3.6 3.7	Equipment Decontamination Procedures
4.	SAMI	PLE CHAIN-OF-CUSTODY AND DOCUMENTATION
	4.1 4.2	Numbering System
		4.2.1 Sample Labels

TABLE OF CONTENTS (continued)

	4.2.2 Chain-of-Custody Records	<u>Page</u> 4-2
5.	SAMPLE PACKING AND SHIPPING	5-1
6.	INVESTIGATION-DERIVED WASTES	6-1
7.	CORRECTIVE ACTIONS	7-1
8.	REFERENCES	8-1

LIST OF FIGURES

Number

Title

- 1-1 Oyster Reefs Located at Mill Hill, Eastern Bay, Maryland
- 1-2 Oyster Reefs Located in Severn River, Maryland
- 2-1 Project Team Organization, USACE Chesapeake Bay Oyster Recovery Program Initial Screening of Oyster Reefs

LIST OF TABLES

Number

Title

- 1-1 Sample Locations at Mill Hill
- 1-2 Sample Locations in Severn River
- 2-1 Project Team Contacts
- 3-1 Summary of Tasks and Analytical Sample Inventory
- 3-2 Method Detection Limits (MDL) for Sediment, Water, and Tissue Analyses

LIST OF ABBREVIATIONS, ACRONYMS, AND UNITS

°C CBF COC	degrees Celsius Chesapeake Bay Foundation Chain of Custody
DGPS	Differential Global Positioning System
EA EPA	EA Engineering, Science, and Technology United States Environmental Protection Agency
⁰ F FSP	degrees Fahrenheit Field Sampling Plan
HNO ₃	Nitric Acid
in.	inch
m ² mm MDE MDL MDNR MS MSD	square meters millimeter Maryland Department of the Environment Method Detection Limit Maryland Department of Natural Resources Matrix Spike Matrix Spike Duplicate
ORP	Oyster Recovery Partnership
PVC	Polyvinyl chloride
QC	Quality Control
TAL TAT	Target analyte list Turn-around-time
USACE USEPA	United States Army Corps of Engineers United States Environmental Protection Agency
YSI	Yellow Springs Instruments
1. PROJECT OVERVIEW

The United States Army Corps of Engineers – Baltimore District (USACE-Baltimore) is permitted to construct oyster reef habitat using alternate substrates. Reefs have been constructed in two tributaries in the Maryland section of the Chesapeake Bay using alternative substrates, multiple reefs at Mill Hill in Eastern Bay (Figure 1-1) in 2002 and the Severn River in 2009 (Figure 1-2).

The composition of the weathered slag in the Severn River and Mill Hill plantings will be evaluated to determine if exposure to the estuarine environment has an effect on the metals content of the planted slag. X-ray fluorescence will be used to determine the bulk composition of the slag. XRF will be performed in the laboratory on a composite sample that will be collected, pulverized, and homogenized from a five-point sample within each of the reefs restored using slag.

The steel slag placed in the Severn River was produced at the Severstal Steel Mill at Sparrows Point in Baltimore, MD. It is also believed that the material placed at Mill Hill in 2002 would have been from Sparrows Point as this is the regional source of steel slag. According to communications with Phoenix Services, it is reasonable to assume that the composition of the steel slag produced at the facility has not changed since the Mill Hill planting in 2002. Therefore, the bulk composition published by Grubb et al. (2010) represents the original composition of the slag prior to placement and will be used to compare the composition of the weathered slag. Analyses shall be performed so that results can be compared with those presented in Grubb et al. (2010).

In 2002, Maryland Department of Natural Resources (MDNR) constructed seven substrate plantings at the Mill Hill sanctuary using the combinations of substrate shown below:

- 6 in. (thickness of planting or depth) shell (3 in. fines and 3 in. shell)
- 3in. shell on a 6 in. slag base
- 3 in. shell on a 6 in. stone base
- 3 in. shell on a 6 in. concrete rubble base
- 6 in. recycled concrete
- 6 in. slag
- 6 in. stone

Figure 1-1 provides a map of the Mill Hill Sanctuary and various oyster plantings that have been completed since 2000. This site was monitored in 2003 by MDNR for growth, density, oyster mortality, spat-set, and disease. Concrete (32 oysters/m^2) and slag (44 oysters/m^2) attracted more larvae, or at least resulted in more spat surviving on it, than stone, shell, concrete with shell, reef balls, slag with shell, or stone with shell (<1 to 15 oysters/m²). MDNR Fall Survey data shows continued presence of oysters on the Mill Hill Sanctuary (adjacent areas to the alternate substrate plantings, but within the Mill Hill Sanctuary).

In 2009, USACE constructed 13.4 acres of oyster reef habitat in the Severn River between the U.S. 50 and Route 450 bridges using oyster shell, stone, concrete, and steel slag on four reefs: Wade, Weems Upper, Traces Hollow, and Peach Orchard (Figure 1-2). Four separate plantings at Wade, the planting at Weems Upper, and a Chesapeake Bay Foundation (CBF) planting will be investigated by this project.

EA Engineering, Science, and Technology, Inc. (EA) has been contracted by the USACE-Baltimore District to perform metals analysis and an initial screening of oysters growing on various alternate substrates and reef habitats.

1.1 SCOPE OF THE FIELD SAMPLING PLAN

This field sampling plan (FSP) describes the field sampling and data-gathering methods for the project. The scope of this FSP follows guidance provided by the United States Environmental Protection Agency (USEPA) *National Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories* (2000).

1.2 PROJECT PURPOSE AND OBJECTIVES

The purpose of this project is to conduct initial screening of oyster reefs restored using alternate substrates. The initial contaminant screening will focus on further characterizing the steel slag used to construct oyster reefs and characterizing the oysters growing on the reefs.

Specific objectives of the initial screening study are to:

- Perform an initial screening of oyster reefs constructed of alternate substrates to include a description of their present state and obtain a sample of the substrate;
- Characterize the composition of steel slag exposed to the estuarine environment;
- Perform a qualitative survey of the habitat and ecological community that has developed at the restored sites at Mill Hill and a semi-quantitative screening at the Severn River sites;
- Collect specific data at each site including oyster size, oyster and spat density, oyster mortality, water quality, water depth of each reef, and videography and photography of each reef, and
- Quantify concentrations of metals in oyster tissue.

1.3 PROJECT LOCATION

Distinct plantings have been constructed in two tributaries of the Chesapeake Bay; seven distinct plantings were constructed at Mill Hill in Eastern Bay near Kent Island, Maryland (Figure 1-1), and eleven distinct plantings were constructed in the Severn River near Annapolis, Maryland,

between the Route 50 and Route 450 bridges (Figure 1-2). For the initial screening, seven locations plus an oyster shell reef (a total of eight locations) will be sampled at Mill Hill and five of the plantings plus an oyster shell reef (a total of six locations) will be sampled in the Severn River. Table 1-1 lists the sample location coordinates and substrate types for the Mill Hill site and Table 1-2 lists the sample location coordinates and substrate types for the Severn River site.

1.4 ANALYTICAL TESTING

Target analytes, target detection limits, and methodologies will be in accordance with USEPA guidance (2000) and Maryland Department of the Environment (MDE) standard operating procedures (2009). Analytical testing will be conducted by TestAmerica Pittsburgh and testing of steel slag samples will be conducted by CTLGroup Laboratories. The list of target analytes, target detection limits, methodologies, and sample holding times are derived from the following guidance documents:

- Maryland Department of the Environment (MDE). 2009. Standard Operating Procedures for Fish and Shellfish Collection and Analysis. Draft.
- U.S. Environmental Protection Agency (USEPA). 2000. National Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories. Volume 1: Fish Sampling and Analysis. Third Edition. Office of Water. EPA 823-B-00-007.

The Target Analyte List (TAL) analysis for oyster tissue will include the following analytes: aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, nickel, potassium, selenium, silver, sodium, thallium, vanadium, zinc, and cyanide.

Steel slag samples will be analyzed using X-ray fluorescence to determine bulk composition of the slag.

1.5 SITE-SPECIFIC SAMPLING AND ANALYSIS PROBLEMS

Sampling problems could include weather and vessel traffic. Potential site-specific problems include the following:

- Vessel traffic (ships, tugs/barges, pleasure craft);
- Weather (cold, high winds, lightning, fog) related delays;
- Insufficient oyster recovery.

The field operations crew is experienced with the logistics associated with sampling activities in busy ports and harbors. The field operations staff is prepared to handle logistical challenges that may arise during the project. The Field Operations Manager will report unanticipated logistical problems to the EA Project Manager and the USACE- Baltimore District Technical Lead and will provide recommendations and/or modifications to the sampling program to achieve the project goals while adhering to the proposed schedule.

Potential chemical analysis problems associated with the project may include:

Matrix interferences

TestAmerica-Pittsburgh is experienced with conducting analytical testing of tissues. Matrix spike (MS) and matrix spike duplicate (MSD) samples will be run with each batch of samples to measure potential matrix interferences. In addition, TestAmerica-Pittsburgh is prepared and committed to achieving the project-required expedited turn-around-time (TAT) for the sample results. The laboratory is prepared to "trouble-shoot" and report any problems during the testing process to the EA Project Manager and the USACE – Baltimore District Technical Lead.

Figure 1-1. Oyster Reefs Located at Mill Hill, Eastern Bay, Maryland

Location ID	Substrate	Size (acres)	Planting Number	Latitude	Longitude
MH-1	6" oveter shell	1	1	38°54.520'	76 ⁰ 13.000'
	(3"fines, 3"shell)		2	38 [°] 54.518'	76 ⁰ 12.924'
			3	38°54.499'	76 ⁰ 13.001'
			4	38°54.499'	76 ⁰ 12.925'
MH-2	3"shell with 6" slag base	1	1	38 ⁰ 54.499'	76 ⁰ 13.001'
			2	38°54.499'	76 ⁰ 12.925'
			3	38°54.478'	76 ⁰ 13.001'
			4	38°54.479'	76 ⁰ 12.923'
MH-3	3"shell with 6" stone base	1	1	38 ⁰ 54.478'	76 ⁰ 13.001'
			2	38°54.479'	76 ⁰ 12.923'
			3	38°54.458'	76 ⁰ 13.001'
			4	38°54.458'	76 ⁰ 12.923'
MH-4	3"shell with 6"	1	1	38°54.458'	76 ⁰ 13.001'
	concrete rubble base		2	38°54.458'	76 ⁰ 12.923'
			3	38°54.439'	76 ⁰ 12.999'
			4	38°54.438'	76 ⁰ 12.924'
MH-5	6"recycled concrete	4.5	1	38°54.438'	76 ⁰ 13.001'
			2	38°54.438'	76 ⁰ 12.924'
			3	38°54.438'	76 ⁰ 12.849'
			4	38°54.395'	76 ⁰ 13.002'
			5	38°54.395'	76 ⁰ 12.924'
			6	38°54.394'	76 ⁰ 12.848'
MH-6	6" slag	1	1	38°54.498'	76 ⁰ 12.924'
			2	38°54.498'	76 ⁰ 12.847'
			3	38°54.479'	76 ⁰ 12.924'
			4	38°54.479'	76 ⁰ 12.848'
MH-7	6" stone	1	1	38°54.479'	76 ⁰ 12.929'
			2	38°54.479'	76 ⁰ 12.851'
			3	38°54.457'	76 ⁰ 12.923'
			4	38°54.459'	76 ⁰ 12.846'

TABLE 1-1. SAMPLE LOCATIONS AT MILL HILL

Location ID	Reef Name	Substrate	Size (acres)	Planting Number	Latitude	Longitude
W2-2	Wade 2-2	concrete, stone,	0.5	1	39 ⁰ 0.162181'	76 ⁰ 30.092999'
		and slag		2	39 ⁰ 0.179640'	76 ⁰ 30.087240'
				3	39 ⁰ 0.187680'	76 ⁰ 30.127439'
				4	39 ⁰ 0.157680'	76 ⁰ 30.083399'
				5	39 ⁰ 0.157919'	76 ⁰ 30.061859'
W2-3	Wade 2-3	concrete	0.25	1	39 ⁰ 0.175980'	76 ⁰ 30.062221'
				2	39 ⁰ 0.176644'	76 ⁰ 30.083836'
				3	39°0.165361'	76 ⁰ 30.054899'
				4	39 ⁰ 0.147300'	76 ⁰ 30.054540'
				5	39 ⁰ 0.147600'	76 ⁰ 30.033000'
W2-4	Wade 2-4	stone	0.25	1	39 ⁰ 0.165660'	76 ⁰ 30.033420'
				2	39 ⁰ 0.136920'	76 ⁰ 30.028020'
				3	39 ⁰ 0.154981'	76 ⁰ 30.028379'
				4	39°0.155281'	76 ⁰ 30.006839'
				5	39°0.137220'	76 ⁰ 30.006480'
W2-5	Wade 2-5	slag	0.25	1	39°0.136920'	76 ⁰ 30.028020'
				2	39°0.163800'	76 ⁰ 29.556481'
				3	39 ⁰ 0.191280'	76 ⁰ 29.557320'
				4	39 ⁰ 0.174540'	76 ⁰ 29.470140'
				5	39°0.135121'	76 ⁰ 29.512319'
				6	39 ⁰ 0.163800'	76 ⁰ 29.556481'
WU	Weems	stone with oyster	2.7	1	38°59.916766'	76 ⁰ 29.835171'
	Upper	shell veneer		2	38°59.945521'	76 ⁰ 29.782680'
				3	38 ⁰ 59.968857'	76 ⁰ 29.718556'
				4	38 ⁰ 59.943487'	76 ⁰ 29.724225'
				5	38°59.936220'	76 ⁰ 29.730780'
				6	38 ⁰ 59.915940'	76 ⁰ 29.741220'
				7	38 ⁰ 59.911440'	76 ⁰ 29.749319'
				8	38°59.902602'	76 ⁰ 29.760893'
				9	38 ⁰ 59.897442'	76 ⁰ 29.769779'
				10	38 ⁰ 59.894440'	76 ⁰ 29.779831'
				11	38 ⁰ 59.895269'	76 ⁰ 29.790290'
				12	38 ⁰ 59.899084'	76 ⁰ 29.800857'
				13	38 ⁰ 59.916766'	76 ⁰ 29.835171'
WCU	Weem's Creek	recovered oyster	5	1	39°0.016000'	76 ⁰ 29.740000'
	Upper	shell		2	38 ⁰ 59.986000'	76 ⁰ 29.685000'
				3	38 ⁰ 59.923000'	76 ⁰ 29.847000'
				4	38°59.951000'	76 ⁰ 29.888000'

 TABLE 1-2.
 SAMPLE LOCATIONS IN SEVERN RIVER

2. PROJECT ORGANIZATION AND PERSONNEL

The project team is organized to provide professional expertise in each of the major components necessary for the completion of the project. A project team organization chart and the project team contact information are provided in Figure 2-1 and Table 2-1.

The Field Team will consist of personnel from University of Maryland and a representative of EA Engineering, Science, and Technology, Inc. The University of Maryland will be responsible for vessel operations and sample collection. EA personnel will be responsible for equipment decontamination, site water collection, homogenization and compositing of samples, labeling and packing of samples, transport of samples to appropriate testing laboratories, and direct coordination with analytical laboratories.

SL
Ż
0
\bigcirc
Σ
E
2
5
Ĥ
R
ž
Δ
•
Ξ
E
B

Technical Expert	Project Role	Affiliation	Telephone Number	Mobile Number	Fax Number	E-mail Address
Carrie Gamber	Analytical Laboratory - Project Manager	TestAmerica Laboratories	(412) 963-2428	1	(412) 963-2468	carrie.gamber@testamericainc.com
Bill Goodfellow	Senior Technical Review, Principal-In-Charge	EA	(410) 329-5121	(717) 891-9907	(410) 771-4204	bgoodfellow@eaest.com
Kris Hoiem	Health and Safety Officer	EA	(410) 329-5149	(443) 463-5334	(410) 771-4204	khoiem@eaest.com
Scott Nettles	Slag Analysis	CTLGroup	(847) 965-7500	1	-	snettles@ctlgroup.com
Christine Papageorgis	Project Manager/Senior Technical Review	EA	(410) 329-5130	(410) 215-3240	(410) 771-4204	cpapageorgis@eaest.com
Dr. Ken Paynter	Field Manager	University of Maryland	(301) 405-6893	(301) 520-1562		paynter@umd.edu
Angie Sowers	USACE, Project Manager	USACE-Baltimore District	(410) 962-7440	(443) 676-4679	-	Angela.Sowers@usace.army.mil
Sam Voss	Sampling Coordinator	EA	(410) 771-4950	(410) 218-5888	(410) 771-4204	svoss@eaest.com

3. FIELD ACTIVITIES

The field investigation will consist of an initial screening of oyster reefs, characterization of the composition of steel slag exposed to the estuarine environment, and a qualitative survey of the habitat and ecological community that has developed at the restored sites.

Workdays will be up to 10 hours in duration (dock to dock), with approximately 8 hours of sampling each day. The sequence of sample collection in any given area will be dependent upon local site and weather conditions. The day-to-day sequence of sampling will be determined at the discretion of the Field Operations Manager. Upon completion of field activities, samples will be submitted to TestAmerica-Pittsburgh for oyster tissue analysis and CTLGroup Laboratories for steel slag analysis.

3.1 SAMPLING OBJECTIVES

The general objectives of the field sampling and sample processing include:

- Evaluation of steel slag composition from 2 locations (plantings) at Mill Hill and 1 location in the Severn River (Wade 2-5).
- Screening of seven substrate locations and a reference site at Mill Hill.
- Screening of six substrate locations in the Severn River.
- *In situ* water quality measurements at each sampling location.
- Submittal of steel slag samples to CTLGroup Laboratories for composition analysis.
- Submittal of oyster tissue samples to TestAmerica for Target Analyte List (TAL) analysis.
- Submittal of water samples for each location for TAL analysis.
- Submittal of sediment sample from 8 locations at Mill Hill and 6 locations in the Severn River for TAL analysis.
- Videography and photography at each location.

Table 3-1 presents a summary of the data to be collected in each task and an inventory of the samples that will be analyzed by Test America and CTLGroup. Table 3-2 lists the method detection limits for sediment, water, and tissue analyses by Test America.

3.2 SAMPLING LOCATION DETERMINATION

Sample locations were provided by USACE-Baltimore. Coordinates (latitude and longitudes) are provided in Table 1-1 (Mill Hill) and Table 1-2 (Severn River). Sampling locations will be located in the field using a Differential Global Positioning System (DGPS).

3.3 SAMPLE VOLUME REQUIREMENTS

A minimum mass of 200 grams of wet tissue is required per sample for oyster tissue TAL analysis. Steel slag sample analysis will require 1 pound of slag per sample.

3.4 *IN SITU* **WATER QUALITY MEASUREMENTS**

Water quality measurements will be recorded *in situ* at each sampling location using an YSI water quality probe. Water temperature, salinity, dissolved oxygen, and pH will be recorded at the bottom of the water column at each sampling location 6 inches to 12 inches above the reef. EA will document calibration procedures and QC checks for the YSI water quality probe. The following parameters will be recorded in the field log book:

- Location number
- Sampling data and time
- Water depth
- Water temperature [degrees Celsius (°C)]
- Salinity (parts per thousand)
- Dissolved oxygen (milligrams per liter)
- pH

3.5 SAMPLE COLLECTION, STORAGE, AND TRANSPORT

3.5.1 Slag Composition

Steel slag will be sampled from five points within each of the slag plantings at Mill Hill (2 plantings) and at Wade 2-5 in the Severn. The five points shall be randomly distributed across the planting, bur representative of the planting. The contractor shall use professional judgment to determine that the five points are the most-representative of the planting. For each planting, the five samples will be pulverized and homogenized into one composite sample for X-ray fluorescence (XRF) in order to determine the bulk composition of the slag. Approximately 1 pound of slag will be collected and submitted to CTL Group Laboratory for analysis.

3.5.2 Mill Hill Oyster Reef Screening

Sampling shall be performed at each of the seven substrate plantings as well as an adjacent site (reference site) that has been restored using oyster shell by Oyster Recovery Partnership (ORP) (Figure 1-1). Table 1-1 provides the coordinates of the seven Mill Hill plantings to be sampled. Videography and a still picture shall be collected at each reef type to characterize the reef environment prior to other sampling activities.

At each planting, three randomly located samples will be collected by divers. On reefs constructed with alternate substrate, traditional harvesting gear cannot be used due to potential damage to the gear. Sampling shall be undertaken while water temperatures remain above 50° F (10° C). Divers shall place a quadrat (square made from PVC piping) on the surface of the reef

to demark the sampling area. Quadrat size will be specified by the contractor but must be within the range of 0.5 to 1.0 m^2 . A uniform quadrat size will be used for all sampling. All materials within the quadrat boundaries (including but not limited to substrate, living and dead oysters, shell, debris, and all benthic fauna) will be placed in a fine mesh bag and provided to the onboard crew for size measurement of oysters and counting of spat, living, and box oysters. The length of all oysters will be measured according to standard practices, and living and dead oysters enumerated. All oysters not being retained for TAL analyses shall be returned to the reef.

A total of 25 market-sized oysters (3 in. length or greater) will be collected at each of three sampling points. For TAL analysis, the full soft tissue body of collected oysters will be homogenized into one composite sample for each sampling point. The oysters will be prepared for analysis and preserved according to the requirements of the analyzing laboratory and in compliance with EPA guidance (EPA 2000) and Maryland Department of the Environment standard operating procedures (MDE 2009). The collected mass will provide sufficient sample to run triplicates at one of the three sampling points on each reef.

In the event that 25 market-sized oysters are not present within a quadrat, the quadrat shall be laid down adjacent to the first location and oysters collected until 25 specimens are collected. If it is not possible to collect 25 market-sized oysters, the minimum mass required by the sampling laboratory will be collected (200 grams of wet tissue). If oysters are small, the contractor will collect additional specimens to ensure the targeted sample size is achieved. Because oyster size and age affects the potential metals bioaccumulation, every attempt should be made to collect oysters of similar size across all sampling points. In accordance with EPA guidance (EPA 2000), the total length (or size) of the smallest individual in any composite sample should be no less than 75 percent of the total length (or size) of the largest individual in the composite sample (EPA 2000). For example, if the largest specimen is 200 mm, then the smallest individual included in the composite sample should be at least 150 mm (EPA 2000). For all samples, the number of ovsters collected for a sample and the weight and length of each ovster will be recorded and provided to USACE. If sufficient oyster mass is not present at this planting or portions of this planting, the contractor shall consult with USACE and use professional judgment to collect a sample and not waste the sampling opportunity. The contractor and USACE shall then jointly decide how to proceed with this task.

Substrate type will be recorded at each location and a representative sample retained to confirm bottom type. Sample size should be that which would occupy a double-bagged quart-size plastic zip top bag, with as much air removed as possible. For plantings restored using slag, the bottom sample will be collected in addition to the slag sample collected for Task 3.5.1 analyses.

All samples shall be preserved according to Table 6-8 in the EPA National Guidance (EPA 2000). Sample handling, processing, and chain of custody shall be conducted according to Section 7 in the EPA National Guidance (EPA 2000).

3.5.3 Severn River Oyster Reef Screening

Figure 1-2 shows the locations of the Severn River plantings and coordinates are provided in Table 1-2. Sampling shall be performed in the fall (October-November) at Wade#2 and Weems

Upper, as well as a neighboring sanctuary reef that has been restored without the use of alternate substrate (CBF and ORP planting restored at Weems Upper). At the Wade #2 planting, each of the following plantings will be sampled: slag (#2-5), concrete ((#2-3), stone (#2-4), and mixed substrates (#2-2). The Weems Upper planting to be sampled is comprised of stone with a shell veneer.

At each planting, three randomly located samples will be collected by divers (traditional harvesting gear may be damaged on reefs constructed with alternate substrates). Sampling shall be undertaken while water temperatures remain above 50° F (10° C). Divers shall place a quadrat (square made from PVC piping) on the surface of the reef to demark the sampling area. Quadrat size will be specified by the contractor but must be within the range of 0.5 to 1.0 m². All materials within the quadrat boundaries (including but not limited to substrate, living and dead oysters, shell, debris, and all benthic fauna) will be placed in a fine mesh bag and provided to the onboard crew for size measurement of oysters and counting of spat, living, and box oysters. The length of all oysters will be measured according to standard practices, and living and dead oysters enumerated. All oysters not being retained for TAL analyses shall be returned to the reef.

A total of 25 market-sized oysters (3 in. length or greater) will be collected at each of three sampling points. In the field, the contractor shall indentify and sample three representative locations. For TAL analysis, the full soft tissue body of collected oysters will be homogenized into one composite sample for each sampling point. The oysters will be prepared for analysis and preserved according to the requirements of the analyzing laboratory and in compliance with EPA guidance (EPA 2000) and Maryland Department of the Environment standard operating procedures (MDE 2009). The collected mass will provide sufficient sample to run triplicates at one of the three sampling points on each reef.

In the event that 25 market-sized oysters are not present within a quadrat, the quadrat shall be laid down adjacent to the first location and oysters collected until 25 specimens are collected. If it is not possible to collect 25 market-sized oysters, the minimum mass required by the sampling laboratory will be collected (200 grams of wet tissue). If oysters are small, the contractor will collect additional specimens to ensure the targeted sample size is achieved. Because oyster size and age affects the potential metals bioaccumulation, every attempt should be made to collect oysters of similar size across all sampling points. In accordance with EPA guidance (EPA 2000), the total length (or size) of the smallest individual in any composite sample should be no less than 75 percent of the total length (or size) of the largest individual in the composite sample (EPA 2000). For example, if the largest specimen is 200 mm, then the smallest individual included in the composite sample should be at least 150 mm (EPA 2000). For all samples, the number of oysters collected for a sample and the weight and length of each oyster will be recorded and provided to USACE. If sufficient oyster mass is not present at this planting or portions of this planting, the contractor shall consult with USACE and use professional judgment to collect a sample and not waste the sampling opportunity. The contractor and USACE shall then jointly decide how to proceed with this task.

Substrate type will be recorded and a representative sample retained to confirm bottom type. Sample size should be that which would occupy a double-bagged quart-size plastic zip top bag, with as much air removed as possible. For plantings restored using slag, the bottom sample will be collected in addition to the sample collected for Task 3.5.1 analyses.

All samples shall be preserved according to Table 6-8 in the EPA National Guidance (EPA 2000). Sample handling, processing, and chain of custody shall be conducted according to Section 7 in the EPA National Guidance (EPA 2000).

3.5.4 Field Blanks

Field blank samples are used to determine if analytical data has been compromised as a result of sampling procedures or field conditions. Field blanks may be used to establish background levels of contamination, and may reveal the possibility of cross-contamination or procedural errors in the collection, packaging, and shipping of samples. To prepare the field blank, a minimum of 200 grams of oyster tissue obtained from a commercial source will be prepared as a sample for laboratory analysis. The field blank sample should be prepared before going into the field, and should accompany other samples through the chain of custody (for example, it should be placed in the sample cooler taken to the field and should be managed the same way other samples are managed and analyzed).

3.5.5 Site Water

Site water will be collected at the center of each planting for TAL analysis at the bottom of the water column approximately 6 to 12 in above the reef. Seven site water samples will be collected at the Mill Hill plantings and 6 site water samples will be collected at the Seven River plantings. Site water samples will be kept at 4° C and will be shipped to Test America laboratory for analysis.

3.5.6 Sediment Samples (TAL Analysis)

A five-point composite sediment sample will be collected for TAL analysis at each of the eight Mill Hill plantings and six Severn River plantings. For the slag plantings, the five sampling points for sediment collection will be co-located with sites where slag was collected per Section 3.5.1. Composites will be produced by homogenizing the five separate grab samples in a stainless-steel bowl and placing the sediment in a pre-cleaned, laboratory container. The five-points of sediment collection will be co-located with sites where slag was collected per Section 3.5.1. Composite sediment samples will be kept at 4° C and will be shipped to Test America laboratory for analysis.

3.5.7 Qualitative Description of Reef Community

Further analyses shall be performed on the quadrat samples described in Sections 3.5.2 and 3.5.3 in order to characterize the reef community at each bar.

3.5.7.1 Mill Hill Plantings

At the Mill Hill sites, the analyses will be qualitative with coverage estimates and diver descriptions of the existing reefs and quadrat samples. A record will be made of organisms that are present in quadrat samples and on reefs for one sample on each of the 8 substrate plantings. If fouling organisms such as barnacles are dense, they will be described as a percent cover of the shell or substrate rather than enumerated. A general description of the reef site shall be recorded, including a description of the degree of coverage of fouling organisms, estimated water visibility, the depth of sedimentation (description of quality of substrate), and any nekton species that were seen using the reef.

3.5.7.2 Severn River Plantings

Sampling trays will be used to investigate the Severn River oyster reef communities. A tray will be placed within the reef structure of each substrate type at the following plantings: Wade 2-3 (concrete), Wade 2-4 (granite), Wade 2-5 (slag), and Weems Creek Upper (CBF site- shell). Sampling trays will be deployed for one growing season; upon collection of trays organisms shall be identified and counted from each sample tray. If fouling organisms such as barnacles are dense, they can be described as a percent cover of the shell or substrate rather than enumerated. A general description of the reef site shall be recorded, including a description of the degree of coverage of fouling organisms, estimated water visibility, the depth of sedimentation (description of quality of substrate), and any nekton species that were visibly seen using the reef.

3.6 EQUIPMENT DECONTAMINATION PROCEDURES

Equipment that will come into direct contact with sediment during sampling will be decontaminated prior to deployment in the field and between each sampling location to minimize cross-contamination. This includes the Ponar grab sampler and stainless steel processing equipment (spoons, knives, bowls, etc.). While performing the decontamination procedure, phthalate-free nitrile gloves will be used to prevent phthalate contamination of the sampling equipment or the samples.

The decontamination procedure is described below:

- Rinse equipment using site water
- Rinse with 10 percent nitric acid (HNO₃)
- Rinse with distilled or de-ionized water
- Rinse with methanol followed by hexane
- Rinse with distilled or de-ionized water
- Air dry (in area not adjacent to the decontamination area)

Waste liquids will be contained during decontamination procedures and transferred to EA's facility in Sparks, Maryland, for disposal (see Section 6).

3.7 SAMPLING CONTINGENCIES

Sampling will be dependent upon daily weather conditions (including heavy rain, high winds, lightning and/or fog), and severe weather forecasts may preclude sampling. The USACE–Baltimore District Technical Lead will be notified of weather-related delays by the Field Operations Manager.

If limited recovery is encountered during sampling operations, the Field Operations Manager and USACE-Baltimore Technical Lead will determine the appropriate corrective actions (e.g., relocation of a station).

TABLE 3-1. SUMMARY OF TASKS AND ANALYTICAL SAMPLE INVENTORY

Task/ Media Samples for Analytical Laboratory	Slag	Tissue	Water	Substrate
Task 1 Slag Composition				
2 sites Mill Hill ; 5 sampling points each to make composites; choose 3 for Task 2	2			
1 site Severn Wade2-5; five sampling points to make composite ; choose 5 random locations for Task 3	1			
Compare weathered slag with Grubb et al (2010)				
Total samples for XRF Analysis	3			
Task 2 Screening of Mill Hill				
Seven sites plus reference site				
3 samples per site; size, #spat, living and box oysters, substrate type; length; tissue		24		
Tissue replicates (1 sample per site in triplicate)		16		
Water			8	
Sediment/substrate representative sample retained to confirm bottom type				
Five point composite sediment sample				8
Field Data-Dissolved oxygen, temperature, pH, salinity at 6-12"above reef, depth to reef				
Videography; still photos				
Field Blank		1	1	
Total Samples for TAL analysis Task 2		41	9	8
Task 3 Screening of Severn River Reefs 2011				
Wade #2-2, 2-3, 2-4, 2-5; Weems Upper (5 sites)				
Reference CBF/ORP Site At Weems Upper				
3 samples per site; size, #spat, living and box oysters, substrate type; length; tissue		18		
Tissue replicates (1 sample per site in triplicate)		12		
Sediment/substrate representative sample retained to confirm bottom type				
Water			6	
Sediment				6
Field Data-Dissolved oxygen, temperature, pH, salinity at 6-12"above reef, depth to reef				
Videography; still photos				
Field Blank		1	1	
Total Samples for TAL analysisTask 2		31	7	6
Task 4A Qualitative Description of Mill Hill 2010				
Qualitative estimates of coverage of quadrat samples by diver				
Record of organisms present for 1 sample on each of 8 plantings				
General description (coverage by fouling organisms, visibility, sedimentation, nekton species)				
Task 4B Qualitative Description of Severn Sites 2011				
Total of Four (4) sampling trays placed on Wade 2-3, 2-4, 2-5, and CBF Reference site at Weems Upper; organisms				
from trays to be identified and counted				
General description (coverage by fouling organisms, visibility, sedimentation, nekton species)				

TABLE 3-2. METHOD DETECTION LIMITS (MDL) FOR SEDIMENT, WATER, AND TISSUE ANALYSES

Sediment TAL Metals (Method 6020)

Compound	RL	Units	MDL	Units
Aluminum	3	mg/kg	0.2849	mg/kg
Antimony	0.2	mg/kg	0.0026	mg/kg
Arsenic	0.1	mg/kg	0.0181	mg/kg
Barium	1	mg/kg	0.0107	mg/kg
Beryllium	0.1	mg/kg	0.0075	mg/kg
Cadmium	0.1	mg/kg	0.007	mg/kg
Calcium	10	mg/kg	1.326	mg/kg
Chromium	0.2	mg/kg	0.0061	mg/kg
Cobalt	0.05	mg/kg	0.0015	mg/kg
Copper	0.2	mg/kg	0.033	mg/kg
Iron	5	mg/kg	0.3539	mg/kg
Lead	0.1	mg/kg	0.0038	mg/kg
Magnesium	10	mg/kg	0.187	mg/kg
Manganese	0.05	mg/kg	0.0103	mg/kg
Nickel	0.1	mg/kg	0.0113	mg/kg
Potassium	10	mg/kg	1.3583	mg/kg
Selenium	0.5	mg/kg	0.0502	mg/kg
Silver	0.1	mg/kg	0.0039	mg/kg
Sodium	10	mg/kg	1.369	mg/kg
Thallium	0.1	mg/kg	0.002	mg/kg
Vanadium	0.1	mg/kg	0.0079	mg/kg
Zinc	0.5	mg/kg	0.0648	mg/kg

	Ľ	
	-	
	ľ	
		i

Mercury	7471A			
Compound	RL	Units	MDL	Units
Mercury	0.033	mg/kg	0.0109	mg/kg

Total Cyanide	9012A			
Compound	RL	Units	MDL	Units
Total Cyanide	0.5	mg/kg	0.0968	mg/kg

	_
	6020)
	thod
	s (Me
	Metal
Water	TAL

i				
Compound	RL	Units	MDL	Units
Aluminum	30	ug/L	2.5662	ug/L
Antimony	2	ug/L	0.0187	ug/L
Arsenic	1	ug/L	0.2908	ug/L
Barium	10	ug/L	860.0	ug/L
Beryllium	1	ug/L	0.0367	ug/L
Cadmium	1	ug/L	0.1144	ug/L
Calcium	100	ug/L	2.8374	ug/L
Chromium	2	ug/L	0.5433	ug/L
Cobalt	0.5	ug/L	0.0263	ug/L
Copper	2	ug/L	0.2443	ug/L
Iron	50	ug/L	6.0901	ug/L
Lead	1	ug/L	0.0192	ug/L
Magnesium	100	ug/L	1.1665	ug/L
Manganese	0.5	ug/L	0.0389	ug/L
Nickel	1	ug/L	0.1749	ug/L
Potassium	100	ug/L	5.823	ug/L
Selenium	5	ug/L	0.4216	ug/L
Silver	1	ug/L	0.0362	ug/L
Sodium	100	ug/L	3.8135	ug/L
Thallium	1	ug/L	0.0152	ug/L
Vanadium	1	ug/L	0.0824	ug/L
Zinc	5	ug/L	0.9609	ug/L

1		+	
	1.1.1	>	
		5	

Mercury	7470A			
Compound	RL	Units	MDL	Units
Mercury	0.2	ug/L	0.0384	ug/L

	ll
2540G	BL.
Total Solids	Commund

Compound	RL	Units	MDL	Units
Total Solids	10	mg/L	10	mg/L
Total Cuanida	001 J A			

TUIAL	y alliuc	VILLA		
Compo	und	RL	Units	MDL
Total C	yanide	10	ug/L	1.5

Units ug/L

Tissues

Compound RL Units MDL Units Aluminum 3 mg/kg 0.236 mg/kg Aluminum 3 mg/kg 0.236 mg/kg Antimony 0.2 mg/kg 0.0033 mg/kg Antimony 0.1 mg/kg 0.0077 mg/kg Beryllium 0.1 mg/kg 0.0077 mg/kg Beryllium 0.1 mg/kg 0.0077 mg/kg Beryllium 0.1 mg/kg 0.0077 mg/kg Cadmium 0.1 mg/kg 0.0077 mg/kg Cadrum 0.1 mg/kg 0.0037 mg/kg Cadrum 0.1 mg/kg 0.0037 mg/kg Chromium 0.2 mg/kg 0.0037 mg/kg Chromium 0.2 mg/kg 0.0037 mg/kg Chromium 0.2 mg/kg 0.0034 mg/kg Lead 0.1 mg/kg 0.0034	TAL Metals (N	Aethod 60	(20)		
Aluminum3mg/kg 0.236 mg/kgAntimony 0.2 mg/kg 0.0033 mg/kgAntimony 0.2 mg/kg 0.0077 mg/kgBarium 1 mg/kg 0.0077 mg/kgBarium 0.1 mg/kg 0.0077 mg/kgBarium 0.1 mg/kg 0.0077 mg/kgBarium 0.1 mg/kg 0.0077 mg/kgBarium 0.1 mg/kg 0.0077 mg/kgCadnium 0.1 mg/kg 0.0077 mg/kgCadnium 0.1 mg/kg 0.0077 mg/kgCadrium 0.1 mg/kg 0.0077 mg/kgChromium 0.1 mg/kg 0.0077 mg/kgChromium 0.1 mg/kg 0.0077 mg/kgChromium 0.1 mg/kg 0.0077 mg/kgChromium 0.2 mg/kg 0.0025 mg/kgChromium 0.2 mg/kg 0.0025 mg/kgChromium 0.1 mg/kg 0.0025 mg/kgChromium 0.1 mg/kg 0.0024 mg/kgSolenum 0.1 mg/kg 0.0024 mg/kgSilver 0.1 mg/kg 0.0024 mg/kgSilver 0.1 mg/kg 0.0024 mg/kgSolenum 0.1 mg/kg 0.0024 mg/kgSolut 0.1 mg/kg 0.0024 mg/kgSolut 0.1 0.0024 mg/kgSolut 0.1 0.0026	Compound	RL	Units	MDL	Units
Antimony 0.2 mg/kg 0.0033 mg/kg Arsenic 0.1 mg/kg 0.0165 mg/kg Barium 1 mg/kg 0.0037 mg/kg Beryllium 0.1 mg/kg 0.0037 mg/kg Beryllium 0.1 mg/kg 0.0037 mg/kg Cadmium 0.1 mg/kg 0.0031 mg/kg Cadnium 0.1 mg/kg 0.0037 mg/kg Cadrium 0.1 mg/kg 0.0085 mg/kg Chromium 0.2 mg/kg 0.0036 mg/kg Cobalt 0.05 mg/kg 0.0035 mg/kg Copper 0.2 mg/kg 0.0037 mg/kg Lead 0.1 mg/kg 0.0034 mg/kg Magnesium 10 mg/kg 0.0034 mg/kg Nickel 0.1 mg/kg 0.0034 mg/kg Nickel 0.1 mg/kg 0.0025 mg/kg Solum 0.0 mg/kg 0.0024 mg/kg Silver 0.1 mg/kg 0.0024 mg/kg Solum 0.1 <td>Aluminum</td> <td>3</td> <td>mg/kg</td> <td>0.236</td> <td>mg/kg</td>	Aluminum	3	mg/kg	0.236	mg/kg
Arsenic 0.1 mg/kg 0.0077 mg/kg Barium 1 mg/kg 0.0077 mg/kg Beryllium 0.1 mg/kg 0.0077 mg/kg Beryllium 0.1 mg/kg 0.0077 mg/kg Cadmium 0.1 mg/kg 0.0037 mg/kg Cadrium 0.1 mg/kg 0.0037 mg/kg Calcium 0.0 mg/kg 0.0037 mg/kg Cobalt 0.2 mg/kg 0.0035 mg/kg Copper 0.05 mg/kg 0.0035 mg/kg Lead 0.1 mg/kg 0.0034 mg/kg Magnesium 0.1 mg/kg 0.0034 mg/kg Nickel 0.1 mg/kg	Antimony	0.2	mg/kg	0.0033	mg/kg
Barium 1 mg/kg 0.0077 mg/kg Beryllium 0.1 mg/kg 0.0037 mg/kg Cadmium 0.1 mg/kg 0.0037 mg/kg Cadmium 0.1 mg/kg 0.0037 mg/kg Cadmium 0.1 mg/kg 0.0037 mg/kg Calcium 10 mg/kg 0.0037 mg/kg Chromium 0.2 mg/kg 0.0035 mg/kg Copper 0.05 mg/kg 0.0035 mg/kg Load 0.1 mg/kg 0.0034 mg/kg Load 0.1 mg/kg 0.0145 mg/kg Magnesium 10 mg/kg 0.0145 mg/kg Nickel 0.1 mg/kg 0.0145 mg/kg Nickel 0.1 mg/kg 0.0024 mg/kg Soloum 0.0 mg/kg 0.0034 mg/kg Nickel 0.1 mg/kg 0.0034 mg/kg Soloum<	Arsenic	0.1	mg/kg	0.0165	mg/kg
Beryllium 0.1 mg/kg 0.0037 mg/kg Cadmium 0.1 mg/kg 0.0091 mg/kg Cadium 10 mg/kg 1.7787 mg/kg Calcium 0.2 mg/kg 0.0037 mg/kg Chromium 0.2 mg/kg 0.0085 mg/kg Chromium 0.2 mg/kg 0.0085 mg/kg Copper 0.05 mg/kg 0.0085 mg/kg Load 0.1 mg/kg 0.0034 mg/kg Lead 0.1 mg/kg 0.0134 mg/kg Magnesium 10 mg/kg 0.0034 mg/kg Magnesium 10 mg/kg 0.0145 mg/kg Nickel 0.1 mg/kg 0.0034 mg/kg Manganese 0.01 mg/kg 0.0034 mg/kg Nickel 0.1 mg/kg 0.0034 mg/kg Nickel <	Barium	1	mg/kg	0.0077	mg/kg
Cadmium 0.1 mg/kg 0.0091 mg/kg Calcium 10 mg/kg 1.7787 mg/kg Chromium 0.2 mg/kg 0.008 mg/kg Chromium 0.2 mg/kg 0.008 mg/kg Cobalt 0.05 mg/kg 0.005 mg/kg Cobalt 0.2 mg/kg 0.005 mg/kg Lead 0.1 mg/kg 0.0034 mg/kg Lead 0.1 mg/kg 0.0034 mg/kg Magnesium 10 mg/kg 0.0034 mg/kg Magnesium 0.1 mg/kg 0.0034 mg/kg Magnesium 0.1 mg/kg 0.00145 mg/kg Magnesium 0.1 mg/kg 0.0024 mg/kg Magnesium 0.1 mg/kg 0.0024 mg/kg Nickel 0.1 mg/kg 0.0024 mg/kg Nickel <td< td=""><td>Beryllium</td><td>0.1</td><td>mg/kg</td><td>0.0037</td><td>mg/kg</td></td<>	Beryllium	0.1	mg/kg	0.0037	mg/kg
Calcium 10 mg/kg 1.7787 mg/kg Chromium 0.2 mg/kg 0.008 mg/kg Cobalt 0.05 mg/kg 0.005 mg/kg Cobalt 0.05 mg/kg 0.0085 mg/kg Cobalt 0.2 mg/kg 0.0085 mg/kg Fron 0.2 mg/kg 0.0085 mg/kg Magnesium 0.1 mg/kg 0.0085 mg/kg Magnesium 0.1 mg/kg 0.0034 mg/kg Magnesium 0.1 mg/kg 0.0034 mg/kg Magnesium 0.1 mg/kg 0.0034 mg/kg Manganese 0.05 mg/kg 0.0024 mg/kg Nickel 0.1 mg/kg 0.0024 mg/kg Nickel 0.1 mg/kg 0.0024 mg/kg Solorum 0.5 mg/kg 0.0024 mg/kg Nickel 0.1 $mg/$	Cadmium	0.1	mg/kg	0.0091	mg/kg
Chromium 0.2 mg/kg 0.008 mg/kg Cobalt 0.05 mg/kg 0.0025 mg/kg Copper 0.2 mg/kg 0.0025 mg/kg Loop 0.2 mg/kg 0.0035 mg/kg Loop 0.1 mg/kg 0.0034 mg/kg Lead 0.1 mg/kg 0.0145 mg/kg Magnesium 10 mg/kg 0.0145 mg/kg Manganese 0.05 mg/kg 0.0145 mg/kg Nickel 0.1 mg/kg 0.0145 mg/kg Nickel 0.1 mg/kg 0.0068 mg/kg Selenium 0.5 mg/kg 0.0024 mg/kg Silver 0.1 mg/kg 0.0024 mg/kg Sodium 0.1 mg/kg 0.0024 mg/kg Solver 0.1 0.0024 mg/kg Soldium 0.1 mg/kg	Calcium	10	mg/kg	1.7787	mg/kg
Cobalt 0.05 mg/kg 0.0025 mg/kg Copper 0.2 mg/kg 0.0085 mg/kg Iron 5 mg/kg 0.0085 mg/kg Iron 5 mg/kg 0.0085 mg/kg Lead 0.1 mg/kg 0.034 mg/kg Magnesium 10 mg/kg 0.0145 mg/kg Manganese 0.01 mg/kg 0.0145 mg/kg Nickel 0.1 mg/kg 0.0068 mg/kg Nickel 0.1 mg/kg 0.0024 mg/kg Selenium 0.5 mg/kg 0.0024 mg/kg Soldium 0.1 0.0024 mg/kg 0.0024 Thallium 0.1	Chromium	0.2	mg/kg	0.008	mg/kg
Copper 0.2 mg/kg 0.0085 mg/kg Iron 5 mg/kg 0.2887 mg/kg Lead 0.1 mg/kg 0.2887 mg/kg Lead 0.1 mg/kg 0.2887 mg/kg Magnesium 0.1 mg/kg 0.0034 mg/kg Manganese 0.1 mg/kg 0.0145 mg/kg Nickel 0.1 mg/kg 0.0145 mg/kg Nickel 0.1 mg/kg 0.0068 mg/kg Potassium 10 mg/kg 0.0931 mg/kg Selenium 0.5 mg/kg 0.0024 mg/kg Soliver 0.1 mg/kg 0.0024 mg/kg Soliver 0.1 mg/kg 0.0024 mg/kg Soliver 0.1 0.0024 mg/kg Soliver 0.1 mg/kg 0.0024 mg/kg Solium 0.1 mg/kg	Cobalt	0.05	mg/kg	0.0025	mg/kg
Iron 5 mg/kg 0.2887 mg/kg Lead 0.1 mg/kg 0.0034 mg/kg Magnesium 10 mg/kg 0.0034 mg/kg Magnesium 10 mg/kg 0.0145 mg/kg Magnesium 10 mg/kg 0.0145 mg/kg Manganese 0.05 mg/kg 0.0068 mg/kg Nickel 0.1 mg/kg 0.0068 mg/kg Potassium 10 mg/kg 0.0406 mg/kg Selenium 0.1 mg/kg 0.024 mg/kg Silver 0.1 mg/kg 0.024 mg/kg Sodium 10 mg/kg 0.024 mg/kg Thallium 0.1 mg/kg 0.002 mg/kg Thandium 0.1 mg/kg 0.002 mg/kg	Copper	0.2	mg/kg	0.0085	mg/kg
Lead 0.1 mg/kg 0.0034 mg/kg Magnesium 10 mg/kg 0.3794 mg/kg Magnesium 10 mg/kg 0.3794 mg/kg Manganese 0.05 mg/kg 0.3794 mg/kg Manganese 0.05 mg/kg 0.0145 mg/kg Nickel 0.1 mg/kg 0.0068 mg/kg Potassium 10 mg/kg 0.9931 mg/kg Selenium 0.5 mg/kg 0.0024 mg/kg Silver 0.1 mg/kg 0.0241 mg/kg Sodium 10 mg/kg 0.024 mg/kg Thallium 0.1 mg/kg 0.002 mg/kg Yanadium 0.1 mg/kg 0.005 mg/kg Zinc 0.5 mg/kg 0.0117 mg/kg	Iron	5	mg/kg	0.2887	mg/kg
Magnesium 10 mg/kg 0.3794 mg/kg Manganese 0.05 mg/kg 0.0145 mg/kg Manganese 0.05 mg/kg 0.0145 mg/kg Nickel 0.1 mg/kg 0.0068 mg/kg Potassium 10 mg/kg 0.9931 mg/kg Selenium 0.5 mg/kg 0.9024 mg/kg Silver 0.1 mg/kg 0.0224 mg/kg Sodium 10 mg/kg 0.7241 mg/kg Thallium 0.1 mg/kg 0.002 mg/kg Thallium 0.1 mg/kg 0.002 mg/kg Vanadium 0.1 mg/kg 0.002 mg/kg Zinc 0.5 mg/kg 0.0058 mg/kg	Lead	0.1	mg/kg	0.0034	mg/kg
Manganese 0.05 mg/kg 0.0145 mg/kg Nickel 0.1 mg/kg 0.0068 mg/kg Potassium 10 mg/kg 0.9931 mg/kg Selenium 0.5 mg/kg 0.9931 mg/kg Silver 0.1 mg/kg 0.0024 mg/kg Silver 0.1 mg/kg 0.0224 mg/kg Sodium 10 mg/kg 0.7241 mg/kg Thallium 0.1 mg/kg 0.002 mg/kg Thadium 0.1 mg/kg 0.002 mg/kg Thallium 0.1 mg/kg 0.002 mg/kg Thallium 0.1 mg/kg 0.002 mg/kg Zinc 0.5 mg/kg 0.0058 mg/kg	Magnesium	10	mg/kg	0.3794	mg/kg
Nickel 0.1 mg/kg 0.0068 mg/kg Potassium 10 mg/kg 0.931 mg/kg Selenium 0.5 mg/kg 0.0406 mg/kg Selenium 0.5 mg/kg 0.0406 mg/kg Silver 0.1 mg/kg 0.0406 mg/kg Solium 0.1 mg/kg 0.024 mg/kg Sodium 10 mg/kg 0.7241 mg/kg Thallium 0.1 mg/kg 0.002 mg/kg Vanadium 0.1 mg/kg 0.002 mg/kg Zinc 0.5 mg/kg 0.0058 mg/kg	Manganese	0.05	mg/kg	0.0145	mg/kg
Potassium 10 mg/kg 0.931 mg/kg Selenium 0.5 mg/kg 0.0406 mg/kg Selenium 0.1 mg/kg 0.024 mg/kg Silver 0.1 mg/kg 0.024 mg/kg Sodium 10 mg/kg 0.7241 mg/kg Thallium 0.1 mg/kg 0.002 mg/kg Vanadium 0.1 mg/kg 0.002 mg/kg Zinc 0.5 mg/kg 0.005 mg/kg	Nickel	0.1	mg/kg	0.0068	mg/kg
Selenium 0.5 mg/kg 0.0406 mg/kg Silver 0.1 mg/kg 0.0024 mg/kg Sodium 10 mg/kg 0.7241 mg/kg Sodium 0.1 mg/kg 0.002 mg/kg Thallium 0.1 mg/kg 0.002 mg/kg Vanadium 0.1 mg/kg 0.002 mg/kg Zinc 0.5 mg/kg 0.0117 mg/kg	Potassium	10	mg/kg	0.9931	mg/kg
Silver 0.1 mg/kg 0.0024 mg/kg Sodium 10 mg/kg 0.7241 mg/kg Thallium 0.1 mg/kg 0.002 mg/kg Vanadium 0.1 mg/kg 0.0058 mg/kg Zinc 0.5 mg/kg 0.0117 mg/kg	Selenium	0.5	mg/kg	0.0406	mg/kg
Sodium 10 mg/kg 0.7241 mg/kg Thallium 0.1 mg/kg 0.002 mg/kg Vanadium 0.1 mg/kg 0.0058 mg/kg Zinc 0.5 mg/kg 0.0117 mg/kg	Silver	0.1	mg/kg	0.0024	mg/kg
Thallium 0.1 mg/kg 0.002 mg/kg Vanadium 0.1 mg/kg 0.0058 mg/kg Zinc 0.5 mg/kg 0.0117 mg/kg	Sodium	10	mg/kg	0.7241	mg/kg
Vanadium 0.1 mg/kg 0.0058 mg/kg Zinc 0.5 mg/kg 0.0117 mg/kg	Thallium	0.1	mg/kg	0.002	mg/kg
Zinc 0.5 mg/kg 0.0117 mg/kg	Vanadium	0.1	mg/kg	0.0058	mg/kg
	Zinc	0.5	mg/kg	0.0117	mg/kg

Mercury	7471A			
Compound	RL	Units	MDL	Units
Mercury	0.033	mg/kg	0.0109	mg/kg

4. SAMPLE CHAIN-OF-CUSTODY AND DOCUMENTATION

Field notes will be recorded in a permanently bound, dedicated field logbook. A log of sampling activities, location coordinates, and water depths will be recorded in the log in indelible ink. In addition, *in situ* water quality measurements will be recorded at each sampling location using an electronic water quality monitoring instrument.

Personnel names, local weather conditions, and other information that may impact the field sampling program will also be recorded. Similar appropriate information will be recorded in this logbook as samples are processed and submitted to the laboratories for analyses. Each page of the logbook will be numbered and dated by the personnel entering information. Corrections to documentation will be made with a single line through the error with the author's initials and date. Copies of the logbooks will be filed at EA's office in Sparks, Maryland. Full copies of the project logbooks will be submitted as an appendix to the project report.

4.1 NUMBERING SYSTEM

The sample numbering system will be used to communicate sample location and sample type between the field crew and the laboratory. Location IDs are listed in Table 1-1 (Mill Hill sampling locations) and Table 1-2 (Severn River sampling locations).

An example of the sample IDs is as follows:

MH-1-SLAG

where the set of letters denotes the site designation (MH denotes Mill Hill locations and W denotes locations in Severn River). The next digit is the station number and the next set of letters is the type of sample collected. Three different types of samples will be collected:

- SLAG slag sample to be submitted for chemical analyses
- OYSTER oyster tissue sample to be submitted for chemical analyses
- WAT site water sample to be submitted for chemical analyses
- SEDIMENT substrate (sediment) sample to be submitted for chemical analyses

4.2 SAMPLE DOCUMENTATION

4.2.1 Sample Labels

Sample labels for slag, site water, and sediment will contain at a minimum the location ID, sample date, and sample time. Sample containers for the oyster tissue samples will be labeled with the following information:

- Project: USACE Oyster Reef Monitoring
- Site Name: Specify Mill Hill or Severn
- Oyster Reef/Planting Name

- Site Description including substrate
- Sample Station ID
- Date Sampled (m/d/yr)
- Time Sampled (24 hr)
- Sample Type
- Sample Depth
- Latitude/Longitude (GPS coordinate)
- Name of persons doing collecting
- Collection method

4.2.2 Chain-of-Custody Records

Samples collected in the field will be documented on a chain-of-custody (COC). Separate COCs will accompany the samples to TestAmerica and CTL Group for sample analysis.

5. SAMPLE PACKING AND SHIPPING

Slag, site water, oyster tissue, and field blank samples will be stored in ice-filled coolers on the work platform until the end of each sampling day. Samples for analytical testing will be packaged in bubble wrap, secured individually in ziplock bags, placed in an ice-filled cooler, and shipped via overnight express to TestAmerica and CTL Group laboratories.

Site water, oyster tissue, sediment samples, and field blank samples for chemical analysis will be sent directly to the following address:

TestAmerica–Pittsburgh 301 Alpha Drive Pittsburgh, PA. 15238 (412) 963-7058 Attn: Sample Management

Slag samples submitted for chemical analyses will be shipped directly to the following address:

CTL Group 5400 Old Orchard Road Skokie, IL 60077-1030 (847) 965-7500 Attn: Scott Nettles

Coolers will have a copy of the COC form taped to the inside of the top lid.

6. INVESTIGATION-DERIVED WASTES

Waste liquids produced during decontamination procedures will be contained at the areas of decontamination and collected in 5-gallon buckets with lids and transferred to a 55-gallon secure drum at the end of the project. Decontamination waste liquid generated will be contained directly in a secure drum located at EA's warehouse facilities in Sparks, Maryland. The liquid contained in the drums will be tested, characterized, and disposed of by a subcontractor.

7. CORRECTIVE ACTIONS

Corrective actions or deviations from the work plan that are deemed necessary during field operations will be verbally approved by the Field Operations Manager, EA's Project Manager, and/or the USACE–Baltimore District Technical Lead, or their designated representatives. Any corrective actions taken during field activities will be documented in the field logbook and filed at EA's office in Sparks, Maryland. Corrective actions will be discussed in the project report.

8. REFERENCES

- Grubb, D.G., M. Wazne, and N.E. Malasavage. 2010. Characterization of Slag Fines for Use as a Dredged Material Amendment. GeoFlorida 2010: Advances in Analysis, Modeling, and Design, Geotechnical Special Publication No. 199, D. Fratta, A.J. Puppala, and B. Muhunthan (eds.). ASCE, pp. 10.
- Maryland Department of the Environment (MDE). 2009. Standard Operating Procedures for Fish and Shellfish Collection and Analysis. Draft.
- U.S. Environmental Protection Agency (USEPA). 2000. National Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories. Volume 1: Fish Sampling and Analysis. Third Edition. Office of Water. EPA 823-B-00-007.

Appendix B Field Logbook and Dive Trip Reports

9/19/11 0745 - Meet Univer MO board & dela 08 15 - depart deck for MII HII hash 0900 - arrive an site o MII HII hash 0900 - arrive an site o MII HII hash 0900 - arrive an site o MII HII hash 0915 - MH-6 site water callected 0930 - 35t system callected 000 - 7.04 000 - 7.04 000 - 7.04 MH-6 - read description by diversi- - late of musicle present - a literate shate water present
--

MH-6 deccel on colt: ADS - on site 0 MH - 1 - dyster bar b (wa into): MH-1 - a botes for any 1 (we office MH-1 - a botes for any 1 (we office MH-1 - a botes for any 1 (we office MH-1 - a botes for any 1 (we office MH-1 - a botes for any 1 (we office MH-1 - a botes for any 1 (we office MH-1 - a botes for any 1 (we office MH-1 - a botes for any 1 (we office MH-2 - a botes for any 1 (we office MH-3 - a botes for any 1 (we office MH-3 - a botes for any 1 (we office MH-3 - a botes and a in broken size - a botes and a botes - a bote calls in broken size - a botes and a botes - a bote calls in broken size - a botes - a bote calls in broken size - a botes - a bote calls in broken size - a botes - a bote calls in broken size - a botes - a bote calls in broken size - a botes - a bote bote in broken size - a botes - a bote bote in bote - a bote <t< th=""><th>MH-5 description contribution - averter bare & live and the averter - averter bare & live and the averter - averter bare & live and the averter - averter bare & live and the averter - averter bare & live and the averter - averter bare & live and the averter - averter bare & live and the averter - averter - averter bare & live and the averter - averter - averter bare & live and the averter - averter - averter bare & live and the averter - averter - averter bare & live and the averter - averter - averter bare & live and the averter - averter - averter bare & live averter - averter - averter averter - averter - averter</th><th></th><th></th></t<>	MH-5 description contribution - averter bare & live and the averter - averter bare & live and the averter - averter bare & live and the averter - averter bare & live and the averter - averter bare & live and the averter - averter bare & live and the averter - averter bare & live and the averter - averter - averter bare & live and the averter - averter - averter bare & live and the averter - averter - averter bare & live and the averter - averter - averter bare & live and the averter - averter - averter bare & live and the averter - averter - averter bare & live averter - averter - averter averter - averter - averter		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c} MH^{-1} G^{-1} G$		
$ \begin{array}{c} MH \cdot G description col f^{\dagger}; & tot S^{\dagger} & ons; fe \otimes M H - I \\ \Rightarrow dest for dest f^{\dagger} \; dest \; \;$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7 box for every 3 live averes
$\begin{array}{c} MH+S & decuption & colstt; \\ \bullet eyster & box & h low & s+ts; \\ \bullet decuption & dowy 1 low & oyster & M H-1 \\ \bullet decuption & dowy 1 low & oyster & M H-1 \\ \bullet decuption & dowy 1 low & oyster & M H-1 \\ \bullet decuption & dowy 1 low & oyster & M H-1 \\ \bullet decuption & dowy 1 low & oyster & M H-1 \\ \bullet decuption & dowy 1 low & oyster & dowy 1 \\ \bullet decuption & dow 1 1 \\ \bullet decup \\ \bullet dow 1 \\ \bullet $	MH-5 description (aft: - dyster bar b live reto; MH-1 - dyster bar b live reto; MH-1 - a bores for new 1 live offer 1055 - 255 bystes; ceavedal - a bores for new 1 live offer 1055 - 255 bystes; ceavedal - abores for new 1 live offer 1050 - MH-1 self-self-second all - abores for new 1 live offer 1050 - MH-1 self-self-second all - abores mH-2 - abores for new 1 cellocheal - abores mH-3 - abores for new 1 cellocheal - abores - mH-2 - abores for new 1 cellocheal - abores - mH-3 - abores for new 1 cellocheal - abores - mH-3 - abores for new 1 cellocheal - abores - mH-3 - abores for new 1 cellocheal - abores - mH-3 - abores for new 1 cellocheal - abores - mH-3 - abores for new 1 cellocheal - abores - many - abores - cellocheal - abores for new 1 cellocheal - abores - many - abores - cellocheal - abores - memores + cellocheal - abores - many - abores - memores - cellocheal - abores - memores + cellocheal - abores - abores - memores - cellocheal - abores - memores - cellocheal - abores - abores - memores - cellocheal - abores - memores - cellocheal - abores - abores - memores - cellocheal - abores - memores - cellocheal - abores - abores - memores - celloche		" ovister box to have ratio
MH+6 decuption continue - avster bar to live actors Interaction	MH-6 description catt: Nots an site MH-1 - oyster bar 6 hux isto; MH-1 MH-1 - a bares for dary 1 his cyster MH-1 1025 an site MH-1 - a bares for dary 1 his cyster MH-1 1025 ast hydros recoverball 1025 an site MH-2 1025 ast hydros recoverball 1045 an site MH-2 1025 MH-1 sediment 1045 an site MH-2 1025 MH-1 sediment 1045 an site MH-2 1025 MH-1 sediment 1045 an site MH-2 102 MH-1 sediment 1045 an site MH-2 102 MH-1 sediment 1045 an site an site MH-2 102 MH-2 1045 an site an site an site MH-2 1045 an site an site an site an site 1045 an site an site an site an site 1045 an site an site an site an site 1046 an site an site an site an site 104		- most oystas present required
MH-6 description contition - dyster box to two is to is MH-1 - a bores for deery 1 hive exister MH-1 - a bores for deery 1 hive exister MH-1 - a bores for deery 1 hive exister MH-1 - a bores for deery 1 hive exister MH-1 - a bores for deery 1 hive exister MH-1 - a bores for deery 1 hive exister MH-1 - a bores for deery 1 hive exister MH-1 - a bores for deery 1 hive exister for an site - a bores for deery 1 hive exister for an site - a bores for deery 1 hive exister for an site - a bores for an site for an site - a bores for an site for an site - a bores for an site for an site - a bores for an site for an site - a bores for an site for every 3 hive aveides	MH·S description Const.t. - ayster box to live lato: mH·S - ayster box to live lato: mH·S - abores for overy 1 live ayster mH·L - abores for overy 1 live ayster mH·L - abores for overy 1 live ayster mH·L - abores for overy 1 live ayster mA-L - abores for overal mA-L - abore for overal mA-L <td></td> <td>- blue crabs + anomanas present</td>		- blue crabs + anomanas present
MH-6 description const.to:to: - ayster bar to live into: a bots for deary 1 live ayster M.H-1 - a botes for deary 1 live ayster M.H-1 1025-25+2 aysters - a botes for deary 1 live ayster 1025-25+2 aysters recorded - a botes for deary 1 live ayster 1025-25+2 aysters recorded - a botes for deary 1 live ayster 1025-25+2 aysters recorded - a botes for deary 1 live ayster 1025-25+2 aysters recorded - a botes for deary 1 live ayster 1025-20+20+2 1025-20+20+2 - a botes for deary 1 live ayster 1020-20+20+2 1020-20+20+2 - a botes adored t collected 5ait 7.89 - a botes adored t collected 5ait 7.89 - a botes adored t collected 5ait 7.83 - a bote context - a botes adored by divers: - a bote context - a bote - a bote - a bote - a bote - a bote - a bote - a bote - a bote - a bote - a bote - a bote - a bote - a bote - a bot	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 box for every 3 1, ve w/stors	- reef covered in broken shall
MH-6 description Contraining - ayster box to two intro; MH-1 - ayster box to two intro; box to two intro; - ayster box to two intro; box to two intro; - ayster box to two intro; box to two intro; - ayster box to two intro; box to two intro; - ayster - ayster - ayster - ayster - ayster <td< td=""><td>MH-6 description contractions with a set of the observe of the obs</td><td>- cyster box to live ratio?</td><td>MH-2 - reaf description by divers;</td></td<>	MH-6 description contractions with a set of the observe of the obs	- cyster box to live ratio?	MH-2 - reaf description by divers;
MH-6 description contra to the section of the secti	MH-6 description constraints to present to treat mH-1 - a verter bar to live intro: - a bores for any 1 live arter mH-1 - a bore and 1 live arter	- no nussels present	
MH-6 deciption content. • dyster bar to live into: • dyster bar to live into: • dyster bar to live into: • dyster bar to live oystor • dyster bar to live oystor	MH+6 description conttine a botes for energy 1 the ayster a botes for energy 1 the ayster mH+2 a botes for energy 1 the ayster a botes for ene	- single avotors as appeared to clumps	00 7.24
MH-6 description conft:. - eyeter bas to true istro: - a botes for any 1 ine aystro - a botes for any 1 ine and a bot more ay does - a botes for any 1 ine and a bot more ay does - a botes for any 1 ine and a bot more ay does - a bote and - a bote and - a bot more ay does	MH-6 description contt: HOKS - on site @ MH-1 - evister bar to live intro; MH-2 - a botes for overy 1 live oright MH-2 - a botes for overy 1 live oright MH-2 - a botes for overy 1 live oright MH-2 - a botes for overy 1 live oright MH-2 - a botes for overy 1 live oright MH-2 - a botes for overy 1 live oright MH-2 - a botes for overy 1 live oright MH-2 - a botes for overy 1 live oright MH-3 - a botes for overy 1 live oright MH-3 - a botes for overy 1 live oright MH-3 - a botes for overy 1 live oright MH-3 - a botes for overy 1 live oright MH-3 - a botes for overy 1 live oright MH-3 - a botes oright MH-3 - a bote oright MH-3 - a bote oright A botes or e orbits - a bote oright A botes or e orbits		0H 8,29
MH-6 description cent: - ayster bar 6 live it to: - ayster bar 6 live it to: - ayster bar 6 live ayster - ayster and 1 ayster collected - ayster aysters recovered live ayster - ayster aysters recovered ayster bar 7 - ayster aysters recovered ayster ayster - ayster ayster a	$\begin{array}{c cccc} MH\text{-}G & & description & Gost^{+}G & & MH\text{-}I & & MH\text{-}I & & MH\text{-}I & & \\ & description & Gost^{+}I & MH\text{-}I & & \\ & description & description & MH\text{-}I & \\ & description & description & description & \\ & description & description & description & description & by & description & \\ & description & description & by & description & by & description & \\ & description & description & by & description & by & description & \\ & description & description & by & description & \\ & description & description & by & description & \\ & description & description & by & description & \\ & description & description & description & \\ & description & description & by & description & \\ & description & description & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	· Similar to real MH-2 but more or stors	S.a.l. 7,90
MH-6 description contractions a bores for every 2 hive syster A bores for every 2 hive syster A H-2 A Bores for every 2 hive syster A H-2 A H-3 A H-3	MH-6 description (ant: - oyster bar to live icto: NMK- an site @ MH-1 - oyster bar to live icto: NH-1 - on site at MH-3 NH-3 - on site at MH-3 NH-3 - on site at MH-3 NH-1 - on site at MH-3 NH-3 - on site at MH-3 NH-3 - on site at MH-3 NH-3 - on site at MH-3 NH-4 - on site at collected 1030 - MH-1 - on site at collected 1030 - MH-1 - on site at collected - on site at collected - on site at collected - on site at collected - on site at collected - on site at collected - on site at collected - on site at collected - on site at collected - on site at collected - on site at collected - on site at collected - on site at collected - on site at collected - on site a	- blue crabs, anonymes + jethics piesont	Temp. 21.88
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MH-2 - reaf description by divers:	1000 - Wate Quinty @ MH-2001
MH-6descriptioncont:1015 - on site $@$ MH-1a botes for dway 1 live aysterMH-1 $MH-1$ $MH-1$ a botes for dway 1 live aysterMH-1 $1035 - 35t$ dystes recovereda botes for dway 1 live ayster $MH-1$ $1035 - 35t$ dystes recovereda botes for dway 1 live ayster $MH-1$ $1035 - 35t$ dystes recovereda botes for dway 1 live ayster $1035 - 35t$ dystes recovereda botes for dway 1 live ayster $1035 - 35t$ dystes recovereda botes for dway 1 live ayster $1035 - 35t$ dystes recovereda botes for dway 1 live ayster $1035 - 35t$ dystes recovereda botes for dway 1 live ayster $1035 - 35t$ dystes recovereda botes for dway 1 live ayster $1035 - 35t$ dystes recovereda botes for dway 1 live ayster $1035 - 35t$ dystes recovereda botes for dway 1 live ayster $1035 - 35t$ dystes recovereda botes for dway 1 live ayster $1035 - 35t$ dystes recovereda botes for dway 1 live ayster $1035 - 35t$ dystes recovereda botes for dway 1 live ayster $1035 - 35t$ dystesa botes for dway 1 live ayster $1035 - 35t$ dystesa botes for dway 1 live ayster $1035 - 35t$ dystera botes for dway 1 live ayster $1035 - 35t$ dystera botes for dway 1 live ayster $105 - 35t$ dystera botes for dway 1 live ayster $105 - 35t$ dystera botes for dway 1 live ayster $105 - 35t$ dystera botes for dway 1 live ayster $105 - 35t$ dystera botes for dway 1 live ayster $105 - 35t$ dystera	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
MH-6 description const: . eyster bax to live intro: . eyster bax to live	MH-6 description contractions - evisies bear to live intro: - aboves for deay 2 live ayster - aboves for deal - aboves f		1000 - 25+ dysturs recovered
MH-6 description contrations - dyster bas to live retro: - a botes for every 2 live system - a botes for every 2 live	MH-6 description constraints eyster bax to hive intro: 1015 on site @ MH-1 eyster bax to hive intro: MH-1 eyster a bores for every 1 hive eyster MH-1 eyster MH-1 1035-25+ eyster 1030-7 MH-1 eysters collected 1030-7 eysters eysters collected eysters eysters collected eysters eysters eysters	P 5:3 H 0	
MH-6 description contractions - ayster bas to live lefto: - abores for every 2 live ayster - abores for e	MH-6 description constraint . oyster box to live (a+to); MH-1 . oyster box to live oyster MH-1 . oo sik at MH-3	52.7.89	0959 - MH-2 sedment collected
MH-6 description constraints in the second description constraints in the second description constraints in the second description on site of the second description on site of the second description on site of the second description of the second descr	MH-6 description cont: . eyster bar to live atto: . eyst	150 21.72	0955 - MH-2 Site water collected
MH-6 description contractions - dyster base to live retions - dyster base to live retions	MH-6 description constraints of the matrix of lected milester to the line of the second description constraints of lected milester to milester to milester to milester to milester to milester to milester	1035 - Water Quelity @ MH-I	
MH-6 description contra - avoided bar to live actions - avoi	MH-6 description cont: - cyster box to live retio: - a botes for every 1 live cyster - a botes for every 1 live cyster - mH-1 site when collected - collected - collected - collected		M + + M
MH-6 description cont: - dyster bar to live retro: - a botes for duely 2 live system - MH-2 - a botes for duely 2 live system - MH-2 - NH-2 - NH-2 - NH-2 - NH-2 - Site which collected	MH-6 description contrations - dyster base to live actions - dyster bactions - dyster base to literations - dyster base	1030 - MH-I sedword collected	
MH-6 description contra a botes for every 2 live aysters 1025-25+ aysters recovered	MH-6 description contri- a botes for every 1 live existers 1025-25+ existers recovered	1027 - MH-I Site what collected	09.45- on sile at MH-2
MH-6 description contra - dyster bax to live intro: 2 botes for every 2 live ayster MH-1 MH-1	MH-6 description contra a botes for every 2 live of the MH-1 MH-4 MH-1	1025-25+ dysters recovered	
MH-6 description cont: - dyster bax to live intro: 2 bokes for every 2 live oyster MH-1 MH-1	MH-6 description constrained with the advection of the advection of the advection of the advector of the advec		
MH-6 description contra	MH-6 description constant	M H	2 bokes for every 2 live ayster
MH-6 description cont: 1015 on site @ MH-1	MH-6 description conot: MH-6 description conot: MH-1		· eyster box to live letio.
		T-HW @ 24'S NO - 2101	MH-6 description const:

	I box for every \$ Int on Sters
	- cyster box to live ratio:
	- very lever large systers
1 box for 2 live ayister	· cysters bund in a lump not singles
oyster bar to live rate:	· fever aysters than at MH-I
- lots of relief onsite - not flat	and barrectes present
enemones riellies present	- blue crass, mud crabs, mussels,
- schotra te camed in nussels+ benecks	bere stand
- Icts of much claubs pleasant	by shall; edges of red - no shell
- lots of small fish (addres) present	- some deas of ref completely covered
1.7 real description by divers.	MIT:3 real description by divers: Mi
63.7 00	00 7.83
0 H 8.44	
7.89	Sel. 7.87
END. 21.97	Top. 21.94
21. Wester Que 1, ty OMA-7	1658 - water Que lity for MH-3
- DS+	1750 - 25+ wstus calkeded
18 - MH-7 sediment collected	1056 MH-3 sedment collected
15. MH-7 site water collected	1051 - MH-3 Sik water collected
	MH-3
05- on-site a MH-7	11 2- +1 W @ 2+10 vol - 0401

H28- analy and collected 1150- an site 0 m H-4 MH-5 MH-5 1185- MB-5 testimut collected 1159- 33-5 cycles collected 1185- MB-5 testimut collected 129- 30-5 1185- Straft collected <td< th=""><th></th><th></th></td<>		
1128-onsik 0 MH-S 1150-onsik 0 MH-4 MH-S salmot clucted 1289-ast optic sliked 1289-ast optic sliked 1185-miles salmot clucted 1289-ast optic sliked 1183-miles salmot clucted 1289-ast optic sliked 1184-site salmot clucted 1289-ast optic sliked 1185-miles salmot clucted 1289-ast optic sliked 1185-miles salmot clucted 1289-ast optic sliked 1184-site salmot clucted 1289-ast optic sliked 1185-miles salmot clucted 1289-ast optic sliked 1185-miles salmot clucted <td></td> <td></td>		
1128 - anale @ MH-S 1150 - anale @ MH-4 MH-S all wort callected 1187 - MH-S call wort callected 1187 - MH-S call wort callected 1187 - MH-S call wort callected 1189 - 251 - ayeles callected 1204 - MH-4 1189 - 251 - ayeles callected 1204 - MH-4 1189 - 251 - ayeles callected 1207 - MH-4 1189 - 251 - ayeles callected 1207 - MH-4 1189 - 251 - ayeles callected 1207 - MH-4 1189 - 251 - ayeles callected 1207 - MH-4 1189 - 251 - ayeles callected 1207 - MH-4 1189 - 251 - ayeles callected 1207 - MH-4 1189 - 251 - ayeles callected 1207 - MH-4 1189 - 251 - ayeles callected 1207 - MH-4 1189 - 251 - ayeles callected 1207 - MH-4 1189 - 251 - ayeles callected 1207 - MH-4 1189 - 251 - ayeles callected 1207 - MH-4 1189 - 251 - ayeles callected 1207 - MH-4 1189 - 251 - ayeles callected 1207 - MH-4 1189 - 251 - ayeles callected 1207 - AH-4 1189 - 251 - ayeles callected 1208 - ayeles callected 1189 - 251 - ayeles callected 1208 - ayeles callected 1189 - 251 - ayeles callected 1208 - ayeles callected 1189 - 251 - ayeles callected 1208 - a		· less cysters present thut at MH-1
H 28. analy C M H - S H SO - on site O m H - H MH S MH S MH - S 1130 - MH S Salmant collected 1130 - ast bysics collected 1131 - MH S Salmant collected 1130 - ast bysics collected 1132 - MH S Salmant collected 1130 - ast bysics collected 1131 - MH S Salmant collected 1130 - ast bysics collected 1132 - MH S Salmant collected 1130 - ast bysics collected 1132 - MH S Salmant collected 1130 - ast bysics collected 1132 - MH S Salmant collected 1130 - ast bysics collected 1133 - Same Grippton By divisition Salmant collected 1130 - ast bysics collected 1132 - Same Grippton By divisition Salmant collected 1130 - ast bysics collected 00 - 71 87 Salmant collected 1130 - ast bysics Salmant collected 00 - 71 87 Salmant collected 1130 - ast bysics Salmant collected 00 - 71 87 Salmant collected 1130 - ast bysics Salmant collected 00 - 71 87 Salmant collected 1130 - ast bysics Salmant collected 00 - 71 87 Salmant collected 1130 - ast bysics Salmant collected 00 - 71 87 Salmant collected 1130 - ast bysics Salmant collected 11 5 5 - by		
11.98. produk @ MH-S 1150 - on sik @ MH-Y MH-S MH-S 11.85 - MH-S c.ik volv collected 11.85 - MH-S c.ik volv collected 11.85 - MH-S c.ik volv collected 11.87 - MH-S c.ik volv collected 11.89 - 35 - oyska collected 1204- MH-Y 11.90 - 7.87 MH-S 00 - 7.87 MH-S - other fight present 5.1 - other fight present 0.0		I box for every I have a ster
1128. and R. O. M.HST 1150-onsk O. M.HY MH-ST 1150-onsk O. M.HY 1185-M.B.S. selmant-allected 1159-235 bydets calledded 1185-M.S. selmant-allected 1159-235 bydets calledded 1185-Self-Allected 1159-235 bydets 1185-Self-Allected 1159-235 bydets 1185-Self-Allected 1159-235 bydets 1185-Self-Black protectes 1159-235 bydets </td <td>I bar for dvery 3 live oysters</td> <td>oyster bax to live ratio:</td>	I bar for dvery 3 live oysters	oyster bax to live ratio:
1128 male 0 MH-S 1150 male 0 MH-H MH-S MH-S 1185 male 0 MH-S MH-H 1185 mH-S collected 1187 mH-S collected 1189 actimum reliected 1189 ast objects collected 1189 ast objects 1189 ast objects collected 1189 ast objects 1189 ast objects 1190 mH-S collected 1189 ast objects 1189 ast objects 1189 ast objects 1189 ast objects 1190 abits 1189 ast objects 1190 abits 1189 ast objects 1190 abits 1189 ast objects 1191 ast objects 1189 ast objects 1192 abits 1189 ast objects 1193 ast objects 1189 ast objects 1194 ast objects 1189 ast objects 1194 ast objects 1189 ast objects 1195 ast objects 1189 ast objects 1195 ast objects <	syster box to live ratio?	- This layer of sealiment on substrate
1138 - mate mH-5 1150 + on site mH-4 MH-5 mH-5 mH-5 mH-4 1137 - mH-5 selment-collected 1204 - AST bydets collected 1137 - mH-5 selment-collected 1204 - MH-4 1137 - mH-5 selment-collected 1204 - MH-4 1138 - asst bysics collected 1204 - MH-4 selmet-collected 1139 - asst bysics collected 1207 - MH-4 selmet-collected 1139 - asst bysics collected 1207 - MH-4 selmet-collected 1139 - asst bysics collected 1207 - MH-4 selmet-collected 1139 - asst bysics collected 1207 - MH-4 selmet-collected 1139 - asst bysics collected 1207 - MH-4 selmet-collected 1130 - alter bysics mH-5 selmet-collected 1207 - MH-4 1130 - alter bysics mH-5 selmet-collected 1207 - MH-4 1130 - alter bysics mH-4 selmet-collected 1207 - MH-4 1130 - alter bysics mH-4 selmet-collected 1207 - MH-4 1130 - alter bysics mH-4 selmet-collected 1144 - 4 1130 - alter bysics mH-4 selmet-collected 1144 - 4 1130 - alter bysics mH-4 self-collected <t< td=""><td>in clumps - high density</td><td>And mone 5</td></t<>	in clumps - high density	And mone 5
H28-ancite 0 MH-ST 1150-ansite 0 MH-Y MH-ST MH-ST 1137 MH-ST 1137 MH-ST 1137 MH-ST 1137 MH-ST 1139 25-5 23-05 25-5 23-05 23-05 23-17 MH-4 1139 23-05 241 7.87 25-1 00 23-05 23-05 241 12-5 23-05 23-05 241 12-5 12-5 00 23-05 23-05 241 12-5 25-6 00 25-7 23-05 241 12-5 25-7 23-05 26-7 28-7 27-8 23-15 26-7 28-7 27-8 28-17 29 24-7 29 24-7 29 24-7 29 24-7 29 24-7 29 24-7 29 24-7 29 24-7 29 24-7 200 7.87 21-64-7 26-7 21-64-7 <td>- few single axyless - majority</td> <td>with mussels, burnactes, and</td>	- few single axyless - majority	with mussels, burnactes, and
H 28 - ancik 0 mH - ST 1150 - ansik 0 mH - 4 MH - ST MH - ST MH -	- few fish + blue crubs present	- alternates substrate arcusted
1128 - analy 0 MH-5 1150 - analy 0 MH-4 MH-5 MH-5 1185 - MH-5 saliment collected 1185 - MH-5 saliment collected 1187 MH-5 saliment collected 1189 Saliment collected 1205 MH-4 1189 Saliment collected 1207 MH-4 119 Saliment collected 1207 MH-4 119 Saliment collected 1207 MH-4 119 Salime	barnacles + mussels	- lots of julies present
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- alternate substrate averal in	- some fish present (schores)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MH- 4 reef description by divers:	MIT-S real description by diversi
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00 8.42	00 7.87
1128- on site 0 M H-S MH-S MH-S MH-S MH-S MH-S Sal, 7.90 II 28- on site 0 M H-Y II 20- on site	6 H 8.58	6.48
1128 - anale 0 MH-ST 1128 - anale 0 MH-ST 1120 - MHS sediment collected 1137 MH-S sediment collected 1139 - 251 systes collected 1139 - 251 systes collected 1139 - 251 systes collected 1130 - MH-S sediment collected 1130 - MH-S sediment collected 1130 - MH-S sediment collected 1207 - MH-S sediment collected	Sal 7.89	5A1. 7.90
1128 - ansite 0 MH-5 MH-5 MH-5 MH-5 MH-5 MH-5 MH-5 MH-5 MH-5 MH-6 MH-4	Temp 22.15	Top 22.05
1129 - 25t cystus collected 1139 - 25t cystus collected 1139 - 25t cystus collected 1130 - MH-5 set matur collected 1139 - 25t cystus collected 1204 - MH-4 site watur collected 1204 - MH-4 site watur collected 1204 - MH-4 site watur collected 1207 - MH-4 site watur collected	1154 lets quelity & MH-4	1142 - water Quality & Mit - 5
MH-5 on site @ MH-5 IISO + on site @ MH-4 MH-5 seliment collected IISO - MH-5 site meter collected	1207 - MH-4 Sealment calledtad	1139.25+ aysters collected
MH-S-mark @ MH-S- MH-S-mark @ MH-S- MH-S-sediment collected 1135-MHS Sediment collected 1150+mark @ MH-H- H-S- MH- H-S- NH- H- H- NH- H- H- NH- H- H- NH- H- H- NH- H	1204-MH-4 Site water adjusted	1137 MA-5 site motor collected
$\frac{M}{H^2} = \frac{1}{S}$	1159 - 25t dysters colleasted	1135 - MHS seeinent collected
$\frac{3}{4}$		
$\frac{1}{28} \cdot \frac{1}{90} + \frac{1}{5}$		MH-G
	1150 ton site on H-4	128- oncite OMH-S

	I box for every 3 live applets
	opples box to live retain
- oysters wealed between alternate	area covered in shell
- law visibility < 2 4th	- Sendy eround edge of reef, mains
- some algae present	too fish present
substrate	not many mussels a barracles pleser
- small barnactis presert of a Hunate	blue dabs + Sclies pleant
Wade 2-5 real description by divers!	very law singk ayoter 5
	-very similar to other shell sites
00 8.67	MH-RLC real description by divers "
p H - not working.	
5-1 4.74	8.9
Temp 18.23	0H 8.62
. 1058 water quality @ w2-5	Set. 7.9
	Temp. 22.33
1120 - 150 + systers dected - very small	1215 water arenty e mit Ret
1105-W2-5 site water callected	
1 1100 Wa-5 seekingt collected	1231 - 25+ avoid recovered
	1227 MH-EL sediment collected
1050- onsite @ Made 275	1222 - MH-Ref site water collected
1000 - 100K the servin-Kim	
0930- meet Univ. of MD boot at duck	
	1212 on site OMH-REF

- Sedim tation present	Sal 4.75 pH not working Qo 7.61 Wade 2-11 description by divers?	1130 W2-4 sedment callected 1135 W2-4 sedment callected 1140 - approximately 167 aysters callected 1142 - mater Quality & W2-2	1/22 - on site @ woold 2-4
- more relief present- not that - substrate in tracent at a	Wade 2-3 red description by divers	1142 water calleded 1142 water calleded 1142 water Calleded 1142 water Quelity & W2-3 18.1 18.1	- 1145- ansite @ Weak 2.3

	25
	1 the not working
of large oxsters is preservit	Sal 4,84
(off of the study area) a reaf	1500 water Quality at WU
- south vest corner of the reaf-	
+ blue crabs present	1258 100 + cysters catacter
Wade D-2 real description:	1250 WW Site work collected
	1245- Wth spanner collectured
P3-3 00	1240- onsite at weens upper
p It not working	
50-1 4,78	
Terp 18.05	+ 3. cold - dea sectment w/ shall
1335 water Quelity at Wa-2	Weens Great Upper rech description: "
1330 - approximately 200 systems received	00 J. 6)
1325 Wa-2 site water collected	off not working
1340 W2-2 sealment collected	521 -1.79
	Temp 17.92
1310- on site at tubel 212	1230 water quality at WCU
	Lander - Part - And -
	1002/01/2012 100/11/2012 - 2001
- oysters concentrated in tranship	patrallos atom aris way beer
- filmentous algae present	120 WW Sedwart collected
- lots of shell - area covered	
Weens Upper real description	1210 - on site o wants cree & upper

	- no photos
	-total of 7 preces of substrate ion
- 6 pickes of substrate	1002 - tray 3 of 4 recovered
1115 - tray 4 of 4 remained	
	- 3 photos on aleck
	-total of 14 pie as of substrate range
- 6 pit les of substrate removed	OTS7-tay 2 at & recovered
110 thay 3 of 4 removed	
	- 2 photos an deak
23425	- total of 10 preces of substrate remeves
- O preces of substrate remarks	0945 - fray 105 recovered
1105 - they 24 4 readered	Node 2-5
	CADIL HOD OL THE UD CI
- 6 pieces et substrate (eneued)	
1100 - tray 1 of 41 recovered	Sam Voss Elt
- Waller J.	Icen fayote V
1826 - on site o Wade 2 - & to put treys	Adr. ws
	Ally Lene Use M
() S- 10 incluss	0 - deport dec < - Angine USALE
where similar in size to piece still in treat	
At pieces & substrate that were emerced	plan to sample @ Seven Rusites
- 2 protos	130-meet boost a dock
total of & pieces & should rever	
101/1++ ray 4 fr 4 recovered	1/22/1

Sell 1202 A. Recovered only 3 of the 4 trays were wade 2-154 Ch11 wash wy - on site O weens bound Upper 1144 - tray 2 & M3 recovered 188 - tray 1st 43 recovered tray 3 & 43/ccare a tray of 4 2 pieces of substrate (ended 20 photos 6 praces & substicte removed O pieces & substrute remand pieces of substitute issued drets 5. phatos WADE 2-34 recovered 1237 8 8 2-8 122 0+ Hn-229 - trey 3 & 4 105 adation was acreally + trey 9 picces pieces of substration removal photo S photo S Passage preces of phaster S 6 . 4 D D D D D 5 4 5 さいかみてきた Recorded substate CN0000 (ccoucies (coverce tdry start 2)26/2 rendered 1 < Marca
University of Maryland-Paynter Labs/USACE Alternate Substrate Monitoring Trip Report

Trip Details:

Date: December 10th, 2010 Departure Time: 11:00am Departure Location: Oak Grove Marina, South River, Maryland Arrival Time: 3:00pm Location of Work: Eastern Bay, Mill Hill Alternate Substrate Plantings

Weather Conditions:

Air Temperature: 0.4°C Water Temperature: 4.0°C Winds: 7.7m/s Visibility: unlimited

Personnel:

Ken Paynter: Captain Hillary Lane: Lead Diver Adriane Michaelis: Diver Jan Vicente: Diver Rebecca Kulp: Deckhand John Houvener: USACE Dive Safety Officer

Description of Work:

One 20-minute dive was conducted at each of the slag plantings (6" slag and 3" shell on slag) at Mill Hill on December 10th, 2010. Figure 1 shows the location of each dive at Mill Hill. Divers dropped at the center of each plot and surveyed the area for the presence of oysters. Alternate substrate and water samples were collected at each site and delivered to EA Engineering on December 13th, 2010. Two oysters were found at the 6" slag planting attached to the substrate and were also delivered to EA Engineering. Extensive mussel coverage was observed at the slag site. Mussels were found completely covering much of the substrate and were mistaken by the divers in the low-visibility waters as being oyster coverage. This mis-observation was corrected once the samples were brought on the boat, when it became obvious that the species present was, in fact, mussels and not oyster. Water and air temperatures were very low, making long surveys of the plots for more oysters impractical. Since oysters were not found in high densities at the slag plantings and cold air and water temperatures created dangerous conditions for the divers, no other substrates were investigated for the presence of oysters.

Attachments:

Figure 1: Map of Mill Hill Alternate Substrate survey Pictures: 5 underwater pictures of alternate substrate December 2010 GIS Data: Point shapefile of survey locations

Paynter Lab/USACE Mill Hill Alternate Substrate Monitoring

University of Maryland-Paynter Labs/USACE Alternate Substrate Monitoring Trip Report

Trip Details:

Date: March 22nd, 2011 Departure Time: 11:00am Departure Location: Oak Grove Marina, South River, Maryland Arrival Time: 3:00pm Location of Work: Severn River, Wade Alternate Substrate Plantings

Weather Conditions:

Air Temperature: 9.4°C Water Temperature: 7.8°C Winds: 4.6m/s Visibility: unlimited

Personnel:

Ken Paynter: Captain Hillary Lane: Lead Diver Adriane Michaelis: Diver Jan Vicente: Diver Drew Needham: Deckhand

Description of Work:

One 20-minute dive was conducted at the slag planting at Wade oyster bar in the Severn River on March 22nd, 2011. Figure 1 shows the location of the dive at Wade. A survey of the plantings at Wade in the fall of 2010 determined the substrate type at each of the four alternate material plantings at Wade, allowing for divers to only survey one of the plantings. Divers dropped at the center of the slag plot and surveyed the area for the presence of oysters. Alternate substrate and water samples were collected and picked up by EA Engineering on March 22nd, 2011. Oyster spat on shell was discovered at the slag planting and were photographed, but were returned to the substrate. Slag recovered at the site as well as any spat on shell that were found were photographed (see Pictures).

Attachments:

Figure 1: Map of the Wade Alternate Substrate survey Pictures: Photos of slag material and spat on shell collected at Wade March 2011 GIS Data: Point shapefile of survey location at Wade

University of Maryland-Paynter Labs/USACE Alternate Substrate Monitoring Trip Report

Trip Details:

Date: May 10, 2011 Departure Time: 8:00am Departure Location: Oak Grove Marina, South River, Maryland Arrival Time: 3:00pm Location of Work: Severn River, Wade and Weems Alternate Substrate Plantings

Weather Conditions:

Air Temperature: 14.9 C Water Temperature: 16.7 C Winds: 5.7 m/s

Personnel:

Ken Paynter: Captain Hillary Lane: Lead Diver Steve Allen: Diver Adriane Michaelis: Back-up Diver/Deckhand Adam Kumm: EA Engineering/Deckhand

Description of Work:

Benthic sampling trays were placed by divers at Wade and Weems Upper alternate substrate planting sites in the Severn River on May 10, 2011. Divers dropped in the center of each alternate substrate type, first to place a screw anchor near the buoyed marker anchor, and then again with each set of trays. Each dive lasted approximately 10-15 minutes. Visibility below water was approximately 1m. Figure 1 shows the location of each dive.

Four (56 cm²) trays were placed approximately 3m apart from one another on each type of alternate substrate at Wade: concrete, slag, and stone. Additionally, four trays were placed on the Weems Upper alternate substrate site (composed of granite with shell veneer). At each substrate type, the four trays were connected via line to a central screw anchor, and trays were also anchored using rebar. When placing trays, alternate substrate was collected from the area that the tray was to occupy and loaded on to the tray. The tray was then moved into the area in which the substrate originated, to make the tray as much a part of the natural reef as possible. A staff member from EA engineering was on board to collect water quality data. No photographs were taken. Trays are to remain in the water for one year, at which point they will be removed by divers and benthic life will be evaluated by EA Engineering.

Attachments:

Figure 1: Map of Severn River alternate substrate benthic sample tray locations. ACoE Trays May2011: GIS point shapefile of Severn River benthic sample tray locations.

Appendix C University of Maryland Dive Plans UM Dive Plan

MARYLAND ENVIRONMENTAL S@FETY Division of Administrative Affai

Home

Home | Topics | Forms | Documents | Training | DES Units | Staff | Contact Us

UM Dive Plan

You successfully submitted the information below.

The dive safety officer will notify you if your dive plan is approved.

Remember to submit your Dive Log after each diving expedition or monthly, at the latest.

Logout

Date Submitted: Tuesday, 11/23/2010 Submitted by:Lane, Hillary Anne Department: BiologyCollege of Chemical & Life Sciences Phone: 3014059701 Email: hillaryannelane@gmail.com Address: Biology-Psychology Building - Room: 1210

Dive Monitor: Karen Kesler Dive Monitor's Phone Number: (443) 928-3155 Dates of Research Dives: 12/9/10 Location of Dives: Severn, Magothy, Choptank, Chester, Patuxent River

1. Participating Scientific Divers and Emergency Information

#	Diver's Name	Depth Certification	Certifying Agency	Emergency Phone	Emergency Contact	Relationship
1	Hillary Lane	30'	PADI	(202) 487- 0312	Dan Rosenthal	Cousin
2	Steve Allen	30'	PADI	(843) 324- 4909	Sara Kingston	Wife
3	Adriane Michaelis	30'	NAUI	(734) 775- 5175	Betty Michaelis	Mom
4	Jan Vicente Raczkowski	30'	NAUI	(336) 669- 3581	Charlie Raczkowski	Uncle

 Emergency plan (Oxygen unit and first aid kit must be on site) Nearest Hyberbaric Chamber location: Baltimore Method of transport/contact: Fastest Available UM Emergency Phone: (301) 405-0330 DAN: (919) 684-9111 DNR Phone: (410) 267-8108

11/23/2010

UM Dive Plan

US Coast Guard Phone: (410) 260-8888

- 3. Approximate number of proposed dives: 12
- 4. Estimated depths and bottom times anticipated: 20' for 20 minutes
- 5. Estimated completion time and time out of water: 5:00pm
- 6. Decompression status and repetitive dive plans if required: No decompression dives planned.
- 7. Nonemergency deviations from this dive plan and/or UM Dive manual must be authorized.
- 8. Proposed work, equipment and boats to be employed: Transect sampling, quadrat sampling, underwater video, Boat: Callinectes

MARYLAND ENVIRONMENTAL S@FETY Division of Administrative Affairs

<u>Home</u>

Home | Topics | Forms | Documents | Training | DES Units | Staff | Contact Us

UM Dive Plan

You successfully submitted the information below.

The dive safety officer will notify you if your dive plan is approved.

Remember to submit your Dive Log after each diving expedition or monthly, at the latest.

Logout

Date Submitted: Monday, 03/14/2011 Submitted by:Lane, Hillary Anne Department: BiologyCollege of Chemical & Life Sciences Phone: 3014059701 Email: hillaryannelane@gmail.com Address: Biology-Psychology Building - Room: 1210

Dive Monitor: Karen Kesler Dive Monitor's Phone Number: (443) 928-3155 Dates of Research Dives: 3/22/11 Location of Dives: Severn, Magothy, Choptank, Chester, Patuxent River

1. Participating Scientific Divers and Emergency Information

#	Diver's Name	Depth Certification	Certifying Agency	Emergency Phone	Emergency Contact	Relationship
1	Hillary Lane	30'	PADI	(202) 487-0312	Dan Rosenthal	Cousin
2	Steve Allen	30'	PADI	(843) 324-4909	Sara Kingston	Wife
3	Adriane Michaelis	30'	NAUI	(734) 775-5175	Betty Michaelis	Mother
4	Jan Vicente Raczkowksi	30'	NAUI	(336) 669-3581	Charlie Raczkowksi	Uncle

- Emergency plan (Oxygen unit and first aid kit must be on site) Nearest Hyberbaric Chamber location: Baltimore Method of transport/contact: Fastest available UM Emergency Phone: (301) 405-0330 DAN: (919) 684-9111 DNR Phone: (410) 267-8108 US Coast Guard Phone: (410) 260-8888
- 3. Approximate number of proposed dives: 12
- 4. Estimated depths and bottom times anticipated: 20' for 20 minutes
- 5. Estimated completion time and time out of water: 5:00 pm
- 6. Decompression status and repetitive dive plans if required: No decompression dives planned.
- 7. Nonemergency deviations from this dive plan and/or UM Dive manual must be authorized.
- 8. Proposed work, equipment and boats to be employed: Transect sampling, quadrat sampling, underwater video. Boat: Callinectes.

MARYLAND ENVIRONMENTAL S@FETY Division of Administrative Affairs

<u>Home</u>

Home | Topics | Forms | Documents | Training | DES Units | Staff | Contact Us

UM Dive Plan

You successfully submitted the information below.

The dive safety officer will notify you if your dive plan is approved.

Remember to submit your Dive Log after each diving expedition or monthly, at the latest.

Logout

Date Submitted: Thursday, 05/05/2011 Submitted by:Lane, Hillary Anne Department: BiologyCollege of Chemical & Life Sciences Phone: 3014059701 Email: hillaryannelane@gmail.com Address: Biology-Psychology Building - Room: 1210

Dive Monitor: Karen Kesler Dive Monitor's Phone Number: (443) 928-3155 Dates of Research Dives: 5/10/11 Location of Dives: Severn, Magothy, Choptank, Chester, Patuxent River

1. Participating Scientific Divers and Emergency Information

#	Diver's Name	Depth Certification	Certifying Agency	Emergency Phone	Emergency Contact	Relationship
1	Hillary Lane	30'	PADI	(202) 487-0312	Dan Rosenthal	Cousin
2	Adriane Michaelis	30'	NAUI	(734) 775-5175	Betty Michaelis	Mother
3	Jan Vicente Raczkowski	30'	NAUI	(336) 669-3581	Charlie Raczkowski	Uncle
4	Steve Allen	30'	PADI	(843) 324-4909	Sarah Kingston	Wife

- Emergency plan (Oxygen unit and first aid kit must be on site) Nearest Hyberbaric Chamber location: Baltimore Method of transport/contact: Fastest available UM Emergency Phone: (301) 405-0330 DAN: (919) 684-9111 DNR Phone: (410) 267-8108 US Coast Guard Phone: (410) 267-8108
- 3. Approximate number of proposed dives: 12
- 4. Estimated depths and bottom times anticipated: 20' for 20 minutes
- 5. Estimated completion time and time out of water: 5:00 pm
- 6. Decompression status and repetitive dive plans if required: No decompression dives planned.
- 7. Nonemergency deviations from this dive plan and/or UM Dive manual must be authorized.
- 8. Proposed work, equipment and boats to be employed: Transect sampling, quadrat sampling, underwater video. Boat: Callinectes

Appendix D Chain of Custody Forms

Operation Registing proprint DM UNIX Encode Provide control of the provide	Archive For	Received by:	huive B Usknown Samp	Company:	ndingen ja. University
Operations Registing program: Dest Dest <thdest< th=""> De</thdest<>	Achive For Company: C	Received by:	hisee B Usknown Samp	Company:	1 M Mary
Operation Regional program DN DNN	alaed longer than 1 notath)	Return to Chert Disposal By Lab	Pasen B C Ustanown C	-	1 100
Open Conser Regarding program. DNN NNN NNNN NNN NNN NNN<	Archive For Motifits	Polyana in the source of if samples are ret	Perion B	ments	tal Instructions/QC Requirements & Com
Operation Regulating preprint Div NVNX NV				s \ _ \ Skin Imizer \ F	estible Harard Identification Non-Hazard Flammable
Clear Channel Regularing program: DW VMX DWX DWX <thdwx< th=""> DWX<</thdwx<>				-	
Char Crand Regulating program. DM MVDX BRX. DM DM MVDX BRX. DM				1 . 1	
Name Charlonane Regularing program: DM MDS BRA Dm Tell write to the matter to the second se				100	
Statuting program: DW VNDS BRXA OTE Technical later Ymme Charlonant Charlona				a the	1
Regulating program: DW WDS BRXA Other Technical Cale OC 0.00 Technical Cale OC 0.00 Technical Cale OC 0.00 OC 0.00 Technical Cale OC 0.00 OC 0.					
Regulating program: DNI NDIS DNIA Other Technicity Laboration 4 E-00/11/al/1/v4 Charl K-14/2 (Condent Address) Charl K-14/2 (Condent Address) State Cense: Ad Cense: Condent K-14/2 (Condent K-14/2 (C				10 miles	
Regulategy program: DNI NNDS BCA Other Technetic Laboration definition 4 E-09_11_aL1114 Chen Phylor Videor: Chen Phylor Videor: Sin C. Cense: Lab Cense: One Phylor Videor: One Phylor Videor: Sin C. Cense: Lab Cense: Sin C. Cense: Sin C. Cense: Lab Cense: Sin C. Cense: Sin Cense: Sin Cense: Sin Cense: Sin		×	No X S	13	NH-HA-04
Repulsion program: DW NNDE: BCRA Other F. Smarr: Class Project Valuer: <			40 X 1	A 7 1 34	NH-WA-05 1
Regulation program: DW NDDS RCA Other * Scanding Clean Project Multiplet: Clean Project Multiplet: Clean Project Multiplet: See Context: Clean Project Multiplet: Technological Project Multiplet: Clean Project Multiplet:	X	X	io X of	1 1 143	1H-WA-02
Regulating program: DW NDDS BCRA Other 4 Experiment fragments Chini Frager Malager: Chini Frager Malager: Technication of the fragments Contact: No Other Technication of the fragments 5 Experiment fragments Chini Frager Malager: Chini Frager Malager: Contact: No Other Technication of the fragments 5 Experiment fragments Chini Frager Milling Transment The experiments Experiments Technication of the fragments No Other Other <td>X</td> <td></td> <td>w X</td> <td>12/10/10 12</td> <td>NH-WA-01</td>	X		w X	12/10/10 12	NH-WA-01
Regulation program: DW NPDES BCRA Other Technerica Laboratoria Ymme: Client Context Client Project Mularger: DW NPDES BCRA Other Technerica Laboratoria 4 Englination of Christicke Client Project Mularger: Client Project Mularger: Ster Contact: Lab Contact: Contact: OOC Not. OOG 1 (0.09 1 (0.09 1 (0.09 1 (0.09 1 (0.09 1 (0.00 1 (Markey Sample Specific Note Special Instructions	HCI NaOH ZaAc/ NaOH Unpres Other: Filtered Sar Composite TAL A	Air Aquraus Sedimrot Solid Other: H2SO4	Sample Date Sampl	Sample Identification
Regulation program: DW NPDES CRA Other Technenits Laboratorie Chest Coatet Chient Project Malager: Chient Project Malager: Size Coatat: DW Other Technenits Laboratorie 4 Englinatering Chient Project Malager: Chient Project Malager: Size Coatat: Lab Coatast: Lab Coatast: Coatast: Coot No: O D 9 1 (4 Englinatering Chient Project Malager: Chient Project Malager: Size Coatast: Lab Coatast: Lab Coatast: Coatast: Coot No: D 9 1 (6 Love Erin Cilicat Project Malager: Coatast: Technenicat Taboratorie Coot No: D 9 1 (6 Love Erin Cilicat Project Malager: Coatast: Technenicat Taboratorie Coot No: D 9 1 (Mol D 9 1 ("Y well	I day	1 02 9772 2344	Shipping/Tracking No:	1313266
Regulation program: DW NPDES BCR Other Other Technonics Caloratories Name: Client Project Maagen: Client Project Maagen: DN Six Contact: Lab Contact: C	Lab jumping	2 seeds	arrije:	Method of Shipmento	A CE GYSLE (UER M
Regulation program: DW NPDES BCRA Other TetAmerica Laboratoria Name: Client Project Malager: Client Project Malager: DA Sile Contact: Client Project Malager: TetAmerica Laboratoria 4 Englinautring Client Project Malager: Client Project Malager: Sile Contact: Client Project Malager: Client Project Malager: Sile Contact: <		a difform how holes	TAI	The Party of	0264-11LLQ14)
Cleat Contact Regulation program: DW NPDES BCRA Other TetAmerica Laboratories v Name: Client Project Malager: Client Project Malager: DA Client Project Malager: TetAmerica Laboratories 4 Enginatrived Client Project Malager: Sac Contact: Lab Contact: Contact: COC Ne: 0091(4 Enginatrived Telephone: 4/8 371 4/8 50 Telephone: Telephone: of coc 5 Love En Cricke Crick 5/30 Telephone: Telephone: of coc	Analyses For late use only	nalysis Ternaround Thee in SUS days	ispearst.com	IISA CPADSIDIA	Sparks, MD 2
Client Contact Regulation program: DW NPDES RCRA Other TetAmerica Caloratories y Name: Client Project Missiger: DW NPDES RCRA Other TetAmerica Caloratories y Name: Client Project Missiger: Site Contact: Tab Contact: Contact: COC No: 4 Englinaturing Christian Project Missiger: Site Contact: Tab Contact: COC No:	at:	r Telephon	71 4950 Telephon CH 5730	Tolephone: 415 7	15 Loveton Circle
Client Contact Regulatory program: DW NPDES RCRA Other TestAmerica Laboratories	men 0091(et: Lab Con	Cara and Carl Stre Cont	Client Project Miniager	A Engineering
	TestAmerica Laboratorie		gram: DW DW	Regulatory pro	(Tient Coatlet

 $\vec{F} \neq \hat{I}$

ð

Relinquished by: (Signature)	Sampled by: (Signature)																\$121/11 1500 X V	Date The Water Sediment	Page 1 of 1	Project#: 62132.66	Project Name: USACE Oyster Reef Monitoring	Sparks, MD 21152	15 Loveton Circle		EA Engineering Science, and Technology, Inc.	Client:
Date/Time	Date/Time 3/11/11 1500																V-1-WAT	Sample Identification			TestAmerica Quote #: 18006079-0	Todd Ward Phone: 410-746-1250	Field Contact:	Phone: 410-329-5130	Christine Papageorgis	Project Manager:
Recei	Relin						_										2	No. of Con	tainers		_		_	_		-
ived b	quish	-	\vdash	-	-		-	+	-	-			_	_		-	××	TAL Metal Mercury (7	ls (6020)	_		_	-		P
y Lat	ed by	-	H		+	\vdash	-	t	-	-		-					x	Total Cyan	ide (90	12A)	-		-	-	_	ALC: U
orato	Sig.																						_			elers/
Gy: (S	nature	_					_									_			_			_	_			Metho
ignat		-	\vdash	-	-		-	+	-	-	_	-	-	_	_		-					-	_	_		M No
ure)		-	\vdash		-	\vdash	-	+	\vdash	-	-	-	_	-	-	-	-			-			_	-		mber
		-	\vdash	-			-	\uparrow						-	-					-			-	-		s for
																										Anal
Prod	Print			_	-		_										_						_	_		Sist
Date	later	-	\vdash	-	-		-	-	-	-	_	_		_		_	_			_	_		_	_		
Time	Time																SEE PROJECT SPECI	R	ATTN: Carrie Gamber		fax: 412.963.2468	phone: 412,963,2428	Pittsburgh, PA 15238	301 Alpha Drive	Laboratory: TestAmerica - Pittsburg	Chain of
MONITORING PROJECT	SHE WATER - USACE														14 I		FIC ANALYTE LIST	Vemarks	7		•			0	zh	Custody Record

7

 (\mathbf{i})

SAMPLE S	UBMISSION	FORM
----------	-----------	------

www.GTLGroup.com

OF-09 San

An AASHTO Accredited Laboratory – Aggregate	s. Cement & Concrete
---	----------------------

CONTACT INFO: Submitter's Name: TODD WARD Company: EA ENGINEERING Mailing Address: 15 LOVETON CIRCLE City, State, Zip: SPARKS MD 21152 Country: USA Phone: 410-746-1250 Fax: 410-771-4204 Email: tward@caest.com	PAYMENT OPTIONS: 1) PURCHASE ORDER / INVOICE: P.O. Number: 8766 Send Invoice To: 8766 Company: 8766 Mailing Address: 9766 City, State, Zip: 9766 Country: 9766 Email: 9766 New Clients: Please enclose payment with your first order or complete the attached Credit Check Application
Company: $EA ENGINEERING$ Mailing Address: $15 LOVETON CIRCLE$ City, State, Zip: $SPARKS MD 21152$ Country: USA Phone: $410 - 329 - 5130$ Fax: $410 - 771 - 4204$ Email: Cpapageorgis @eaest.co Send Final Report by: Regular Mail $Express Mail*$ $Email* Express mail service will be billed at cost plus 10%.$	2) ADVANCE PAYMENT: Check No.; Check Amount: \$ 3) CREDIT CARD: Credit Card Type: UVISA MasterCard AmEx Cardholder's Name (print): Credit Card Number: Credit Card Number: Exp. Date: (mm/yyyy) V-Code No.: CC Billing Address: City, State Zip: Credit Card Payments: All CC information (above) & Authorized Signature (below) are required for CC payment.
SAMPLE HANDLING: Number of Samples Submitted: 3 List all samples on second page. Attach additional pages as needed. Are any samples Hazardous Materials? YES NO Hazardous materials must be clearly marked on packaging and MSDS are required. After testing, hazardous materials will be returned or disposed of at submitter's expense. Special Sample Storage?: No: After testing, are samples to be: Returned?** Or Disposed of? ** Return shipping will be billed at cost plus 10%.	PROJECT BACKGROUND: Reasons for testing or problem observed, if any: XRF Analysis on Slag from 2 estuarine environments Project Name: USACE - OYSTER REEF MONITORING Location: CHESAPEAKE BAY, MD Type of Structure: Mathematical Action Size & Age: Is this a Litigation Case?
AUTHORIZATION: See attached Lab, Servic I've read and agree with CTLGroup's Standard Terms and Con Amount Authorized: \$ (U.S. funds) Authorized	e Orden, EA'S PROCUREMENT OFFICE IS ditions (attached)? AYES PROCEMING 2 bd Service Orden for additional disignature:

 Main Office:
 5400 Old Orchard Road
 Skokle, Illinois 60077-1030
 Phone:
 847-965-7500
 Fax:
 847-965-6541

 Mid-Atlantic Office:
 9030 Red Branch Road, Suite 110
 Columbia, Maryland 21045-2003
 Phone:
 410-997-0400
 Fax:
 410-997-8480

 New England Office:
 1
 Washington Street, Suite 300A
 Dover, New Hampshire 03820-3831
 Phone:
 603-516-1500
 Fax:
 603-516-1510

SAMPLES SUBMITTED	- Mark each samp	le with Sample ID	(Hazardous materials must be clearly marked on packaging)
-------------------	------------------	-------------------	---

۰,

Sample ID 10 characters or less	Type of Material	Analysis / Test(s) Requested
MH-1-SLAG	slag	XRF (ASTM CI271)
MH-2-SLAG	11	'n
W-1-SLAG		4
e 10		

Please attach relevant documents (if applicable, specifications/mix design, photographs, test results).

									1						2 ×	
Client:	-0 <i>c</i> -in			Project Mar	nager:	-	Par	amete	rs/Met	N poq	umber	s for A	ulysi			Chain of Custody Record
and Techno	logv. II		r	INALINI CISC	7										ra 1 r	boratory:
				Phone: 410	-329-5112										305	stanterica - filisuurga 1 Alaha Driva
15 Loveton	Circle			Field Contac	ct										bit.	tshirah. PA 15238
Sparks, MD	21152			Sam Voss												
				Phone: 410)-218-5888										ohu	one: 412.963.2428
Project Nam	e: Oyst	ter Re	efs	бан. К			0701								Į	(: 412.963.2468
Project#:	6253	33.01				ې رې ۶.	()	(
Page 1	of	1		Sediment Sam	nles	19nistr -: 1 17	¥0/7/	¥7106							LA	TTN: Carrie Gamber
Date	Time	Water	bnəmibə2	Sam	ple Identification	No. of Con	Mercury (1)) sbinsyJ			· . · · · · · · · · · · · · · · · · · ·					Remarks
9/19/2011	1027	×		MH-1-WAT		7	×	×						1	SE	E PRÔJECT SPECIEIC ANALYTE LIST
9/19/2011	0955	×		MH-2-WAT	-	~	×	×			-	Ţ	<u> </u>		1	
9/19/2011	1051	×		MH-3-WAT		~ ~	X	×	 	<u> </u>	-				<u> </u>	
9/19/2011	1204	×		MH-4-WAT		2	×	×			╞		<u> </u>		<u> .</u>	
9/19/2011	1137	×		MH-5-WAT		2	×	×		<u> </u>			<u> </u>		<u> </u>	
9/19/2011	0915	×		MH-6-WAT		7	X	×			 			<u>†</u>	<u> </u>	
9/19/2011	1115	×		MH-7-WAT		2	×	×			 		<u> </u>		-	
9/19/2011	1222	×		MH-REF-WAT		7	×	×						Ţ	<u> </u>	
9/19/2011	1234	×		MH-FB		2	×	×			ļ	[<u> </u>	
				<i>L</i> .					-							
												·				
							\square							-		
							-	-+	-+				-			
			\square			-			<u> </u>	,						
Sampled by:	(Signa	(and		·	Date/Time	Relinq	uished	by: (S	ignatı	ire)	-			Date/	Time	Water Samples
Relinquished	by: (Si	gnatui	<u>ع</u> گا	en	Date/Time 9/20/4/60	Receiv	ed by	abor	atory: ((Signat	(ure)			Date/	lime	

Client:				Project Man	ager:			Irame	ters/Methor	1 Numbere	for Ano	الثونو			
EA Engineer	ing Sci	ience,		Karin Olsei	-		' 	Ļ				ench		Laboratory:	
	ы, уд,	<u>.</u>		Dhone: 410	210 6117									TestAmerica - Pittsburgh	
15 Loveton C	lircle			Field Contac	7110-670-									301 Alpha Drive	
Sparks, MD	21152			Sam Voss	č									Pittsburgh, PA 15238	
		1		Phone: 410-	-218-5888										
Project Name.	: Oyste	sr Reef	3			1	020		9 0					pnone: 412.903.2428 fax: 412.963.2468	
Project#:	62132	2.66				S) 9 (1	()	1452						
Page 1	of	-		Sediment Samp	ples	1 19nintn	siJ JA	V2106	M2 &					ATTN: Carrie Gamber	
Date	Time	Water	Sediment	Samp	ole Identification	No. of Co	Mercury () obinevO	vilo2 IntoT					Remarks	
9/19/2011	1030		×	MH-1-SED		-	×	×	×			<u> </u>		SEE PROJECT SPECIFIC ANALVTE LIST	
9/19/2011 (959		×	MH-2-SED		1	×	×	×		<u> </u>				
9/19/2011	1056	ĺ	×	MH-3-SED		-	× ×	×	×						
9/19/2011	207		×	MH-4-SED		-	×	×	×				1		
9/19/2011	135		×	MH-5-SED		-	×	×	×						
9/19/2011 (920		×	MH-6-SED			×	×	×				<u> </u>		
9/19/2011	118		×	MH-7-SED			×	×	×						
9/19/2011	227		×	MH-REF-SED		-	X	×	×				1		
		1	T												
		T	Τ				-								
		\uparrow	Î												
	1		Ĩ												
		\uparrow	1												
	Ť	\uparrow	1												
		\uparrow					-								
	Ť		Ì												
			Ť								\neg				
Commind hun (t															
) .vo paulinec	ungnatu) fair		,	Date/1 ime	Relin	luishe	l by:	(Signature)			Da	e/Tim	e Sediment Samples	
Relinquished b Lawn	y: (Sig. A	nature) 	lae	2	Date/Time $\alpha / \gamma_{0.7} / / L 0D$	Recei	/ed by	Labc	ratory: (Sig	nature)		Dat	e/Tim		
-		,			- 1 / n							_			

Client.				IProject Manage	ar.		Doro	antoro /	A bodto	Inchard	for An	.lucio		Chain of	Custodu Decord
EA Engineeri	ne Sci	ence.		Karin Olsen			r al a		MCIIION I				I I aborat		Custody Nector
and Technolo	gy, In(TestAn	ierica - Pittsburg	eh
	i			Phone: 410-32	29-5112								301 AI	, oha Drive)
15 Loveton C	ircle			Field Contact:									Pittsbu	rgh, PA 15238	
Sparks, MD	21152			Sam Voss											
				Phone: 410-21	(8-5888	(phone:	412.963.2428	
Project Name:	Oyste	r Reet	S			9209							fax: 41	2.963.2468	
Project#:	62532	3.01				s.	(
Page 1	of	ю		Sediment Sample	Š	ntainen AL Lis	VI <i>L</i> †L	AZ TUEJ noinszi					ATTN	Carrie Gamber	L
Date	Time	əussiT	JnəmibəZ	Sample	Identification	No. of Co Metals (T	Mercury (Homogen						ц	Remarks
9/19/2011	1025	х		MH-1-Oyster-A		1 X	×	хX							
9/19/2011	1025	×		MH-1-Oyster-B		1 X	×	X X							
9/19/2011	1025	x		MH-1-Oyster-C		1 X	x	x x							
9/19/2011	1025	×		MH-1-Oyster-CD		1 X	×	××							
9/19/2011	1025	×		MH-1-Oyster-CT		1 X	x	x							
9/19/2011	1000	×		MH-2-Oyster-A		1 X	X	x							
9/19/2011	1000	×		MH-2-Oyster-B		1 X	×	××							
9/19/2011	1000	×		MH-2-Oyster-C		1 X	×	XX							
9/19/2011	1000	×		MH-2-Oyster-CD		1 X	×	×							
9/19/2011	1000	×		MH-2-Oyster-CT		1 X	×	x x							
9/19/2011	1052	×		MH-3-Oyster-A		1 X	×	x x							
9/19/2011	1052	x		MH-3-Oyster-B		1 X	×	x							
9/19/2011	1052	х		MH-3-Oyster-C		1 X	×	× ×							
9/19/2011	1052	x		MH-3-Oyster-CD		1 X	×	× ×							
9/19/2011	1052	×		MH-3-Oyster-CT		1 X	×	x							
		_													
Sampled by:	(Signat	ture)			Date/Time	Relinq	uished	by: (Sig	(nature)				ate/Time		Tissue Samples
Relinquished	by: (Si	gnatur	() ()		Date/Time	Receiv	ed by I	aborato	rry: (Sigr	nature)			ate/Time		
< 	\bigvee	J	19	×	SX C/0 11/04										

nain of Custody Record		ttsburgh	1	5238		428	8		lamber	Remarks																	Tissue Samples	
G	Laboratory:	TestAmerica - Pi	301 Alpha Drive	Pittsburgh, PA 1:)	phone: 412.963.2	fax: 412.963.246		ATTN: Carrie G																		ne	
																										 	Date/Tin	
ilysis																												┫
for An																												
mbers																											-	
nN poq																											ure)	
rs/Met		. <u></u>							noijez	Нотодел	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	 	Signati	
ramete								(¥2106) əbinsyƏ	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×		d by: (
Par								(VIL7L	Mercury (X	X	X	X	X	×	X	X	X	X	X	X	X	X	×	_	uishe	
						(0205	s (1	rənısın zi. I. 14	10.0 10 .0VI	1 1			×	× -	× -	×	× -	1 X	- -	×	1	×	× -			teling	
	L						[╉
			- 1							ication																	ne	
ü			9-5112			8-5888			s	Identif																	ate/Tir	
lanage	lsen		10-32	ntact:	s	10-21			ample	umple	_	~		A	£	-	~	~	ម្ព	E		_		A	E		<u> </u>	-
ject N	rin O		one: 4	ld Cor	m Vos	one: 4			ent S:	S	yster-/	yster-E	yster-C	yster-(yster-C	yster-/	yster-E	yster-C	yster-(yster-(yster-/	yster-F	yster-(yster-(yster-(
Pro	Ka		Ph	Fie	Sai	μ			Sedim		H-4-0	H-4-0	H-4-0	H-4-0	H-4-0	H-5-0	H-5-0	H-5-0	H-5-0	H-5-0	H-6-0	Ю-9-Н	Ю-9-H	H-6-0	Ю-9-H			
										Sediment	M	M	Σ	M	M	Σ	M	M	M	Σ	Σ	M	Σ	X	X		-	
	ice,						Reefs	10	ę	aussiT	х	×	×	×	×	×	×	×	×	×	×	×	×	×	×		e) –	
	g Scier	y, Inc.		cle	152		Oyster	\$2533.(ž	ime	159	159	159	159	159	1139	139	139	1139	139	930	930	930	930	930		ignatur	
	neerin	nology		n Cir	AD 21		ame: (Q	~	Ë.	11	11 1	111	11 1	11 1	111	11 1	11	11 1	111	11	11	111	11	111	 _	Jy: (S	
Client:	EA Engir	and Tech		15 Lovetc	Sparks, N		Project Na	Project#:	Page 2	Date	9/19/20	9/19/20	9/19/20	9/19/20	9/19/20	9/19/20	9/19/20	9/19/20	9/19/20	9/19/20	9/19/20	9/19/20	9/19/20	9/19/20	9/19/20		Sampled t	

Client:				Project Man	13061:		Dar	intere	e Math	uN po	mhare	for An	alucio		i ujud	of Custody Descrid	Г
EA Engineeri	ng Sci	ence,		Karin Olser	n	┢			al MICH				erekin	┢	Laboratory:	I CUSTON NACOLO	
and Technolo	gy, Inc	د													TestAmerica - Pittsbur	reh	
				Phone: 410.	1-329-5112										301 Alpha Drive	D	
15 Loveton C	ircle			Field Contac	ct:										Pittsburgh, PA 15238		
Sparks, MD	21152			Sam Voss													
				Phone: 410	-218-5888	ι 									phone: 412.963.2428		
Project Name:	Oyste	ır Reel	fs				700				_				fax: 412.963.2468		
Project#:	6253;	3.01				, (1 S.	(()									
Page 3	of	ŝ		Sediment Sam	ples	19nisin -: 1 14	VIL7L	V7106	1011871						ATTN: Carrie Gambe	er	
Date	Time	əussiT	JnəmibəZ	Samŗ	ple Identification	No. of Co	Mercury (1	Cyanide (นอธิอมเดษ							Remarks	
9/19/2011	1117	×		MH-7-Oyster-A		1	K X	×	×								·
9/19/2011	1117	×		MH-7-Oyster-B			X	×	×								·
9/19/2011	1117	×		MH-7-Oyster-C		1	د x	X	X								
9/19/2011	1117	×		MH-7-Oyster-CD		1	X	×	X								
9/19/2011	1117	x		MH-7-Oyster-CT		1 3	X X	×	×								
9/19/2011	1235	×		MH-REF-Oyster-/	A	1	X	×	×								
9/19/2011	1235	х		MH-REF-Oyster-1	B	1	×	×	×								
9/19/2011	1235	×		MH-REF-Oyster-(С	1	۲ ۲	×	×								
9/19/2011	1235	×		MH-REF-Oyster-(CD		x X	×	×								
9/19/2011	1235	х		MH-REF-Oyster-(cr	1	×	×	X								
																	[]
																	r
	Γ												<u> </u>				
			ļ						ļ								
			<u> </u>														
			<u> </u>														
Sampled by:	(Signat	(anne)			Date/Time	Relin	luishec	l by: (Signatu	ire)				Date/	lime	Tissue Samples	S. Contractory
Relinquished l	y: (Sig	Inatur	() ()		Date/Time	Receiv	red by	Labor	atory: (Signat	(and			Date/	ime		1711210
1		$\overline{\ }$	2	h	\$ 2/11 15 4>												-

Client:			Project Manae	ier:		Par	uneterc	/Method	Muruh I	The for	Analysi			of Crutedu Barand
EA Engineering Sci	ence,		Karin Olsen		F							Ļ	Laboratory:	of Custody Necold
and Technology, In			-, <u>.</u>										TestAmerica - Pittsbu	reh
			Phone: 410-3.	29-5112									301 Alpha Drive	0
15 Loveton Circle			Field Contact:										Pittsburgh, PA 15238	
Sparks, MD 21152			Sam Voss)	
			Phone: 410-2	18-5888									phone: 412.963.2428	
Project Name: Oyste	r Reeft	6				070							fax: 412.963.2468	
Project#: 62132	2.66				S.	() 	()							
Page 1 of	-		Water Samples	14	ntainer -: 1 1A	₩0 <i>L</i> † <i>L</i>	¥2106						ATTN: Carrie Gamb	er
Date Time	Water	JuəmibəZ	Sample	> Identification	oD lo .oN	Mercury (Cyanide (Remarks
10/6/2011 / 325	×		W2-2-WAT		2	X	×						SEE PROJECT SPEC	CIFIC ANALYTE LIST
10/6/2011 1155	×		W2-3-WAT		2	X	×							
10/6/2011 1/35	×		W2-4-WAT		2	X	×							
10/6/2011 1/05	×		W2-5-WAT		2	X	×							
10/6/2011 1250	×		WU-WAT		2	X	×							
10/6/2011 /239	×	-	WCU-WAT		2	×	×		 					
10/6/2011 /338	×	-	SEVERN - FB		2	X	×							
										<u> </u>				
Sampled by: (Signati	(əır			Date/Time	Relinc	uishec	by: (Si	gnature)				Date	Fime	Sediment Samples
Relinquished by: (Sig	nature) 7 / /			Date/Time	Receiv	ed by	Laborat	ory: (Si	gnature)			Date/	lime	
land 1	2	\mathcal{V}	1	10/1/11 1520										

Client.	IProie	act Manager.				A _ 1 _ ;	
EA Engineering Science,	Kari	in Olsen					I aboratory:
and Technology, Inc.							TestAmerica - Pittsburgh
	Phon	ne: 410-329-5112					301 Alpha Drive
15 Loveton Circle	Field	l Contact:					Pittsburgh, PA 15238
Sparks, MD 21152	Sam	Voss					.)
	Phon	ne: 410-218-5888	(phone: 412.963.2428
Project Name: Oyster Reefs			0709				fax: 412.963.2468
Project#: 62132.66) (): s.	() ()	1 524		
Page I of 1	Sedimer	nt Samples	ntainer AL Lis	V7106. V1 <i>L†L</i>	MS sb		ATTN: Carrie Gamber
Date Time Water Time		Sample Identification	No. of Co Metals (T.	Mercury (Cyanide (vilo2 lssoT		Remarks
x 0/6/2011//320	W2-2-SED	(1 X	× ×			SEE PROJECT SPECIFIC ANALYTE LIST
10/6/2011 / 185 X	W2-3-SED	(- X	×××	×		
10/6/2011 // <i>3O</i> X	W2-4-SED	(1 X	× ×	x		
x 0/6/2011 1000 x	W2-5-SED	(1 X	× ×	X		
10/6/2011 1245 X	WU-SED		1 X	×××	×		
X 0720 11/2/01	- MCC1 -	- SED	X T	スズ	X		
Sampled by: (Signature)		Date/Time	Relinquis	hed by:	(Signature)	Date/	ime Sediment Samples
Relinquished by: (Signature)		Date/Time	Received	by Lab	oratory: (Signature)	Date/I	ime
lend 1000	0	10/7/11 7500					
~							

Custody Record	nionvi (noicin)	eh	D						L	Remarks																	Tissue Samples	
Chain of	Laboratory:	TestAmerica - Pittsburg	301 Alpha Drive	Pittshuroh, PA 15238		phone: 412.963.2428	fax: 412.963.2468		ATTN: Carrie Gambe																		ate/Time	ate/Time
imbers for Analysis	CICCUT 1 111 1 101 CICCUT																										D	ature) D
Darameters/Method N						07	00	(¥ (¥ (¥	1747) (1747) oitezii	Mercury (Dyanide Dyanide Homogen	X X X X	X X X X	X X X X	X X X X	X X X X	X X X X	X X X X	X X X X	X X X X	X X X X	X X X X	X X X X	X X X X	X X X X	X X X X		quished by: (Signature)	ved by Laboratory: (Sign
						07	09	ers ,ist)	AL L	No. of Co T) slals (T	1 X	1 X	1 X	1 X	1 X	1 X	1 X	1 X	1 X	1 X	1 X	1 X	1 X	1 X	1 X		Reling	Receiv
30er.			329-5112			218-5888			les	de Identification																	Date/Time	Date/Time 1
Project Man	Karin Olser		Phone: 410-	Field Contac	Sam Voss	Phone: 410-			Sediment Sam	Samp	W2-2-Oyster-A	W2-2-Oyster-B	W2-2-Oyster-C	W2-2-Oyster-CD	W2-2-Oyster-CT	W2-3-Oyster-A	W2-3-Oyster-B	W2-3-Oyster-C	W2-3-Oyster-CD	W2-3-Oyster-CT	W2-4-Oyster-A	W2-4-Oyster-B	W2-4-Oyster-C	W2-4-Oyster-CD	W2-4-Oyster-CT			
							fs			nəmibəZ																		(e)
	ience.	ر. ار					er Ree	3.01	2	ənssiT	X	X	X	X	X	Χ	Χ	X	Χ	Χ	X	X	X	X	X		ture)	ignatuı
	ing Sc	ogy, In		ircle	21152		: Oyst	6253	of	Time	1100	1100	1100	1100	1100	1215	1215	1215	1215	1215	1250	1250	1250	1250	1250		(Signa	by: (Si
Client:	EA Engineer	and Technold		15 Loveton C	Snarks, MD		Project Name	Project#:	Page 1	Date	10/7/2011	10/7/2011	10/7/2011	10/7/2011	10/7/2011	10/7/2011	10/7/2011	10/7/2011	10/7/2011	10/7/2011	10/7/2011	10/7/2011	10/7/2011	10/7/2011	10/7/2011		Sampled by:	Relinquished

Custody Record	\$104011 (\$00000	gh							L	kemarks																	Tissue Samples	
Chain of	Laboratory:	TestAmerica - Pittsburg	301 Alpha Drive	Pittsburgh, PA 15238	1	phone: 412.963.2428	fax: 412.963.2468		ATTN: Carrie Gambe	н 																	ate/Time	ate/Time
Numbers for Analysis																												gnature) D
Parameters/Method						070	09	ers (tsi, (A) (A) n	niaine 1747) 1747) 2109) 2108) 2108)	No. 01 CC Metals (T Mercury C Cyanide Homoger	1 X X X X	1 X X X X	1 X X X X	1 X X X X	1 X X X X	1 X X X X	1 X X X X	1 X X X X	1 X X X X	1 X X X X	1 X X X X	1 X X X X	1 X X X X	1 X X X X	1 X X X X		elinquished by: (Signature)	eceived by Laboratory: (Si
1ger:			329-5112	ť		218-5888			les	le Identification																	Date/Time R	Date/Time R
Project Mana	Karin Olsen		Phone: 410-	Field Contac	Sam Voss	Phone: 410-			Sediment Samp	Samp	W2-5-Oyster-A	W2-5-Oyster-B	W2-5-Oyster-C	W2-5-Oyster-CD	W2-5-Oyster-CT	WU-Oyster-A	WU-Oyster-B	WU-Oyster-C	WU-Oyster-CD	WU-Oyster-CT	WCU-Oyster-A	WCU-Oyster-B	WCU-Oyster-C	WCU-Oyster-CD	WCU-Oyster-CT			
							efs			nəmibəZ																		ure)
	cience	nc.			~		ster Re	33.01	2	ənssiT	0 X	0 X	0 X	0 X	0 X	0 X	0 X	0 X	0 X	0 X	0 X	0 X	0 X	0 X	0 X		ature)	signatu
	ring S	logy, I		Circle	21152		e: Oys	625.	of	Time	1320	1320	1320	1320	1320	120	120	120	120	120	1130	113(1130	1130	113		(Sign	1 by: (S
Client:	EA Enginee	and Techno		15 Loveton	Sparks, MD		Project Nam	Project#:	Page 2	Date	10/7/2011	10/7/2011	10/7/2011	10/7/2011	10/7/2011	10/7/2011	10/7/2011	10/7/2011	10/7/2011	10/7/2011	10/7/2011	10/7/2011	10/7/2011	10/7/2011	10/7/2011		Sampled by:	Relinquishec

Appendix E Oyster Data from Mill Hill Sites

	Mill Hill - Refer	ence
Oyster	Length (mm)	Width (mm)
1	88.6	24.45
2	98.91	27.27
3	105.17	22.21
4	95.73	25.08
5	114.67	27.19
6	121.23	30.51
7	112.4	28.71
8	108.01	26.61
9	116.49	30.41
10	99.37	26.03
11	121.75	27.84
12	106.17	26.65
13	98.36	15.98
14	112.67	27.05
15	98.32	16.69
16	95.85	31.31
17	85.5	36.22
18	87.15	27.19
19	74.11	26
20	100.94	23.43
21	97.77	26.51
22	123.73	28.9
23	102.61	28.67
24	100.32	24.2
25	83.12	27.39
26	83.11	24
27	92.1	21.01
28	109.62	36.81
29	120.38	22.4
30	110.56	18.71
31	86.22	23.92
32	90.17	26.32
33	89.25	24.3
34	85.67	31.72
35	80.51	28.8
36	87.29	22.94
37	104.67	27.86
38	112.22	24.8
39	99.37	24.6
40	90	29.33
41	70.82	26.15
42	108.11	28.45
43	83.67	29.08
44	73.6	25.88

Total Wet Weight of Tissue = 392 grams

	Mill Hill - 1	
Oyster	Length (mm)	Width (mm)
1	107.74	48.91
2	96.24	47.12
3	103.51	48.63
4	105.18	43.88
5	103.39	43.39
6	120.76	43.36
7	108.04	40.68
8	98.15	34.48
9	90.57	31.62
10	106.5	43.02
11	97.48	45.51
12	90.18	45.03
13	90.67	45.68
14	120.72	46.01
15	110.94	47.69
16	105.25	44.04
17	86.43	32.7
18	74.66	22.17
19	104.66	41.35
20	112.19	36.01
21	93.07	37.74
22	92.68	35.11
23	97.27	40.14
24	98.17	41.6
25	93.64	39.83
26	61	21.05
27	57.96	20.9
28	73.3	26.69
Total Wet	Weight of Tissu	e = 267 grams
Total Wet	Mill Hill - 2	
Ovster	Length (mm)	Width (mm)
1	80.73	17.18
2	77.05	30.19
3	66.31	21.08
4	80.79	31.29
5	115.48	41.69
6	53.49	21.72
7	74.19	24.88
8	81.18	28.92
9	100.79	34.8
10	73.62	22.65
11	69.8	14.36
12	73.24	21.95
13	68.46	27.11
14	76.45	28.23

15	72.9	28.94
16	82.01	36.4
17	68.25	26.26
18	59.81	12.44
19	62.81	20.99
20	61.12	24.92
21	67.67	21.33
22	75.5	22.42
23	66.59	20.33
24	53.53	24.47
25	84.3	21.14
26	70.24	19.11
27	61.01	22.59
28	74.67	22.31
29	67.01	29.45
30	74.19	25.64
31	73.3	27.7
32	68.34	29.83
33	71.1	24.19
34	85.57	34.76
35	59.54	19.09
36	106.78	33.87
37	58.27	18.74
38	74.29	24.27

Total Wet	Weight of Tissu	e = 233 grams
	Mill Hill - 3	
Oyster	Length (mm)	Width (mm)
1	90.37	12.47
2	102.71	24.33
3	80.71	21.25
4	88.53	20.36
5	75.99	25.7
6	73.12	15.08
7	86.74	25.82
8	86.9	24.4
9	102.77	42.62
10	83.99	21.96
11	75.91	21.14
12	98.68	19.9
13	109.49	16.15
14	92.77	23.63
15	71.35	20.64
16	103.43	22.27
17	70.29	26.38
18	92.9	21.98
19	77.18	23.02
20	67.6	22.28

21	86.08	23.21
22	75.55	18.14
23	102.53	22.53
24	104.23	22.3
25	95.5	20.51
26	107.05	23.27
27	76.33	19.72
28	73.45	22.9
29	100.83	23.91
30	86.66	26.89
31	79.7	27.53
32	83.86	29.78
33	77.25	31.02
34	83.38	24.97
35	90.91	16.02
36	96.12	17.92
37	77.85	25.86
38	81.24	27.45
39	98.74	36.22
40	84.57	20.02
41	103.35	18.14
42	76.62	19.55
43	68.6	21.92
44	80.08	18.75
45	74.38	22.03
46	75.19	24.17
47	72.15	21.04
48	72.62	24.19
49	86.09	24.15
50	83.86	14.8
51	76.06	15.36
52	67.7	23.55
53	102.75	17.88
54	81.55	21.56
55	72.69	22.54
56	76.59	20.09
57	75.72	20.5
58	71.29	24.24
59	71.09	23.78
60	73.99	20.11
Total Wet	Weight of Tissu	e = 432 grams
Mill Hill -	4	
Oyster	Length (mm)	Width (mm)
1	76.27	24.09
2	73.62	28.89
3	101.12	34.94
4	94.76	29.87

5	81.99	25.11	
6	67.11 19.25		
7	76.2 18.97		
8	93.84	25.09	
9	88.19	26.22	
10	89.01	28.28	
11	83.79	22.88	
12	77.27	19.72	
13	77.68	25.03	
14	75.34	21.57	
15	89.62	25.51	
16	75.19	24.25	
17	98.65	24.79	
18	76.89	25.34	
10	73.46	21.49	
20	83 14	21.49	
20	80.16	17 78	
21	85 30	33.76	
22	93 94	24 16	
23 24	85 41	24.10	
2 4 25	69.4	24.88	
25	70.82	17.22	
20	79.82 87	20.25	
21	07 73 37	20.23	
20	73.32	24	
29	116.68	22.23	
30 21	78 57	25.70	
22	78.37 97 29	23.04	
52 22	07.30	20.03	
22 24	02.42	30.03 20.12	
54 25	93.43	30.12	
33 26	08./1	∠1.1∠ 24.22	
30 27	104.89	24.33 22.71	
5/ 20	155./5	33./1	
58 20	98.1	26.85	
59 40	104.88	31.02	
40	93.34	26.43	
41	63.51	23.03	
42	83.14	24.71	
43	59.84	25.21	
44	77.83	25.75	
45	74.59	28.66	
46	93.89	26.88	
47	99.51	28.29	
Total Wet Weight of Tissue = 327			
grams			
	Mill Hill - 5		
Oyster	Length (mm)	Width (mm)	
1	105.7	26.02	

2	111.44	30.15
3	120.49	32.19
4	67.34	22.64
5	64.55	18.08
6	113	32.88
7	70.32	20.39
8	62.19	23.69
9	80.78	16.61
10	67.55	22.65
11	64.8	25.3
12	112.6	36.08
13	85.55	20.42
14	70.74	29.57
15	80.91	19.74
16	60.17	19.37
17	57.59	20.62
18	61.21	23.87
19	74.03	23.27
20	88.69	22.44
21	68.65	18.8
22	55.15	19.07
23	132.17	40.49

Total Wet Weight of Tissue =209 grams

	Mill Hill - 6	
Oyster	Length (mm)	Width (mm)
1	107.97	47.29
2	109.03	36.53
3	82.5	33.53
4	83.71	23.87
5	97.21	29.99
6	125.56	35.02
7	80.41	29.79
8	107.33	29.6
9	123.62	32.73
10	116.9	41.52
11	95.42	25.37
12	120.81	40.9
13	102.22	50.12
14	99.69	47.86
15	84.89	21.66
16	90.06	20.7
17	115.98	37.49
18	99.74	38.67
19	108.14	22.74
20	65.91	27.18
21	90.52	34.43
22	72.23	29.68

23	95.42	35.81
24	82.49	24.47
25	67.6	21.74
26	96.02	33.48
27	94.91	29.52
28	73.62	17.59
29	64.82	22.68
30	85.47	25.9
31	74.45	20.56
32	76.9	19.61
33	61.97	28.09
34	68.06	24.29
35	65.23	18.76
36	71.52	23.77
37	69.09	22.4
38	71.72	21.24
39	65.91	17.55

Total Wet Weight of Tissue = 399 grams Mill Hill - 7

Mill Hill - 7			
Oyster		Length (mm)	Width (mm)
	1	137	33.4
	2	112.94	33.25
	3	76.15	23.83
	4	70.15	25.45
	5	59.52	22.54
	6	112.22	39.5
	7	100.02	33.74
	8	100.12	30.76
	9	78.51	26.11
	10	106.66	42.98
	11	107.8	25.4
	12	79.41	24.96
	13	57.53	23.88
	14	78.1	25.23
	15	74.74	22.34
	16	77.43	36.2
	17	103.32	43.96
	18	83.9	27.56
	19	102.4	25.67
	20	109.66	34.68
	21	84.61	36.34
	22	67.09	31.2
	23	136.04	38.63
	24	113.82	41.39
	25	81.83	21.39
	26	71.3	25.76
	27	94.01	38.84

28	126.23	47.43
29	110.4	37.39
30	110.73	42.21
31	81.49	39.51
32	99.32	33.52
33	95.09	23.24

Total Wet Weight of Tissue = 363 grams

Appendix F-1 Mill Hill Reefs Pictures

Photo 1. Underwater photographs of Mill Hill alternate substrate

Photo 2. Underwater photograph of Mill Hill alternate substrate

Photo 3. Underwater photograph of Mill Hill alternate substrate

Photo 4. Underwater photograph of Mill Hill alternate substrate

Appendix F -2 Severn River Reefs Pictures

Photo 1. Photograph of slag material from Wade 2-3

Photo 2. Photograph of slag material and spat from Wade 2-3

Photo 3. Photograph of slag material from Wade 2-3

Photo 4. Photograph of slag material from Wade 2-3
Appendix F-3 Severn River Trays Deployment Pictures

Photo 1. Oyster Trays to be Deployed in Severn River Sites

Photo 2. Dive Gear to be Used for Severn River Tray Deployment

Photo 3. Divers Preparing to Deploy Trays at Weems Upper Site

Photo 4. Divers Preparing to Deploy Trays at Weems Upper Site

Photo 5. Diver Preparing to Enter Water with Tray at Weems Upper Site. Dive Marker Buoy in the Background

Appendix F-4 Severn River Trays Collection Pictures

Photo 1. Tray Recovered from Wade 2-2

Photo 2. Tray Recovered from Wade 2-2

Photo 3. Tray Recovered from Wade 2-2

Photo 4. Tray Recovered from Wade 2-2

Photo 5. Tray Recovered from Wade 2-2

Photo 6. Tray Recovered from Wade 2-3

Photo 7. Tray Recovered from Wade 2-4

Photo 8. Tray Recovered from Wade 2-4

Photo 9. Tray Recovered from Wade 2-4

Photo 10. Tray Recovered from Wade 2-4

Photo 11. Tray Recovered from Wade 2-5

Photo 12. Tray Recovered from Wade 2-5

Photo 13. Tray Recovered from Wade 2-5

Photo 14. Tray Recovered from Weems Upper

Photo 15. Tray Recovered from Weems Upper

Photo 16. Tray Recovered from Weems Upper

Photo 17. Tray Recovered from Weems Upper

Photo 18. Stone with Attached Fauna from Wade 2-5 Recovered Tray

Photo 19. Slag Pieces (Top) and Concrete Pieces (Bottom) from Recovered Trays (Wade 2-3 and Wade 2-4 Respectively)

Photo 20. Typical Fauna Associated with Recovered Trays from Severn River Sites