APPENDIX A

FLOODING POTENTIAL TECHNICAL MEMORANDUM

This page is blank to facilitate double sided printing.

SITE SELECTION OF STREAM CROSSINGS TO BE ANALYZED FOR FLOOD OVERTOPPING

TECHNICAL MEMORANDUM

Subtask 2.1.5 Patapsco Tidal and Bodkin Creek Watershed Study

March 2011

Prepared For:

Anne Arundel County Department of Public Works Watershed Management Program 2662 Riva Road Annapolis, Maryland 21401

Prepared by: *LimnoTech* 1705 DeSales St. NW, Suite 600 Washington, DC 20036

Introduction

Under Subtask 2.1.5 of the Patapsco Tidal and Bodkin Creek watershed study, LimnoTech worked with the Anne Arundel County Department of Public Works to identify stream crossings with the potential for flooding within the Patapsco Tidal and Bodkin Creek watersheds. These selected stream crossings will be surveyed, modeled using an HY8 hydraulic model, and potentially considered at a later date for replacement or modification. This Technical Memorandum documents the procedures LimnoTech performed to complete this task.

Crossings Selection Procedure

Identification and selection of the sites with flood overtopping potential was performed using the criteria outlined by the County along with County-provided GIS data and crossing information collected during field activities. A more detailed description of the selection criteria and the data sources are discussed below.

Selection Criteria

The County's selection criteria included the following:

- Stream crossing must be owned by the County;
- Road must be classified as Freeway, Principal Arterial, Minor Arterial, Collector, or Local in the County's Master Transportation Plan;
- Overtopping is likely, given field conditions;
- Crossings must be older than 5 years and not scheduled for replacement; and
- Flooding would completely cut off an area from emergency services.

Data Sources

Site selection was conducted using GIS data provided by the County and data collected during field activities associated with the physical habitat condition assessment task (Task 3). Data utilized included:

- Stream reaches ("Streams" *LimnoTech*)
- Roadway types ("Streets" *County*)
- Patapsco Tidal and Bodkin Creek subwatershed boundaries ("Subwatersheds" *County*)
- Aerial photography (*County*)

• Crossings ("PTBodkin_Crossings" *LimnoTech*)

Crossing Selection Results

The selection process used a stepwise procedure that incorporated one of the County selection criteria into each step. The results of each step are captured in fields added to the "PTBodkin_Crossings" GIS layer. The original set of 403 crossings identified during the field assessments are depicted in Figure 1. The selection steps were conducted as follows:

- 1. A subset of crossings inventoried during field activities was selected if the road crossed was classified as Freeway, Principal Arterial, Minor Arterial, Collector, or Local under the County Master Transportation Plan as provided in the "Streets" shapefile, and crossed a perennial stream or channel that became perennial at the downstream side. Crossings on large roads, including I-97, I-695, I-895, Rt. 10, Rt. 100 and Rt. 2 (Ritchie Highway) were not included as it is assumed that they are designed for large storm capacity. Foot trail crossings, driveway culverts, and SWM associated culverts were eliminated from consideration. Of 403 crossings assessed during field activities, **97** met these criteria. These crossings were designated with a "Yes" in the TYPE_CROSS field of the "PTBodkin_Crossings" GIS layer. These crossings are depicted in Figure 2.
- 2. Crossings were selected if field conditions indicated that overtopping is likely, determined primarily by the height (less than 20 ft.) of the road surface above the water surface. LimnoTech also assessed pertinent channel and floodplain characteristics, including culvert dimensions, embankment height, surrounding land use, and probable drainage area contribution. Cases where upstream conditions were non-perennial, while downstream conditions were perennial were assessed on an individual basis and included if warranted. Of the 97 remaining crossings, **75** met this criterion. These crossings were designated with a "Yes" in the HEIGHT_CRO field of the "PTBodkin_Crossings" GIS layer. These crossings are depicted in Figure 3.
- 3. Crossings were to be selected only if older than 5 years and not scheduled for replacement. Age data for all crossings was not available. The Anne Arundel County, Proposed Capital Budget and Program. Fiscal Year 2010: Supplement 2 and Anne Arundel County, Proposed Capital Budget and Program. Fiscal Year 2011: Volume #2 were consulted to determine replacement plans. Of the 75 remaining crossings, 46 met this criterion. These crossings were designated with a "Yes" in the AGE_CROSS field of the "PTBodkin_Crossings" GIS layer. These crossings are depicted in Figure 4.
- 4. Crossings were to be selected if there was potential that overtopped roads may completely isolate an area from emergency services. Aerial photography and county roads coverage were used to visually assess alternate routes to both sides of each crossing. Of the 46 crossings meeting previous criteria, 14 were found to isolate an area when flooded either singularly or concurrently. These crossings were designated with a "Yes" in the ISO_CROSS field of the "PTBodkin_Crossings" GIS layer. The

ISO_NOTE field indicates whether the crossing is included due to singular or concurrent flooding. These crossings are depicted in Figure 5.

5. Crossings were cross referenced with a County database to ensure they were located on county owned roads. Two sites were found to be on private roads. A total of **12** crossings were identified for further analysis.

Final Recommendations

LimnoTech recommends that 12 stream crossings be surveyed for selected hydraulic design information (as outlined in Subtask 2.1.6) for utilization by the County in HY8 modeling. The crossings are summarized in Table 1 below.

		FUNCTION	
INVENTORY ID	ROAD NAME	CLASS	ISOLATION
PTG052.C001	OLD MILL RD	LOCAL	SOLO
PTG067.C001	PHIRNE RD E	COLLECTOR	SOLO
PTG071.C001	PHIRNE RD E	COLLECTOR	SOLO
PTG083.C001	PHIRNE RD E	COLLECTOR	SOLO
PTG096.C001	KRAMER CT	LOCAL	SOLO
PTG102.C001	GREEN BRANCH LN	LOCAL	SOLO
BK2013.C001	BAYSIDE BEACH RD	COLLECTOR	WITH BK2006.C001
BK2006.C001	BAYSIDE BEACH RD	COLLECTOR	WITH BK2013.C001
PT8045.C001	MARLEY NECK RD	COLLECTOR	WITH PT8030.C001
PT8030.C001	MARLEY NECK RD	COLLECTOR	WITH PT8045.C001
PTG070.C001	NOLCREST RD	LOCAL	WITH PTG068.C001
PTG068.C001	PHIRNE RD E	COLLECTOR	WITH PTG070.C001

TABLE 1 – Recommended Road Crossings for Surveying

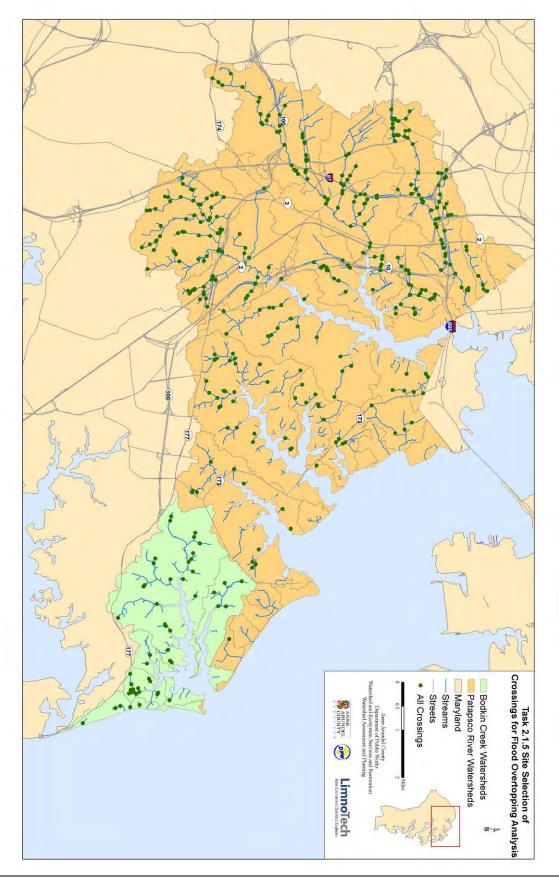


Figure 1: Original Set of Stream Crossings

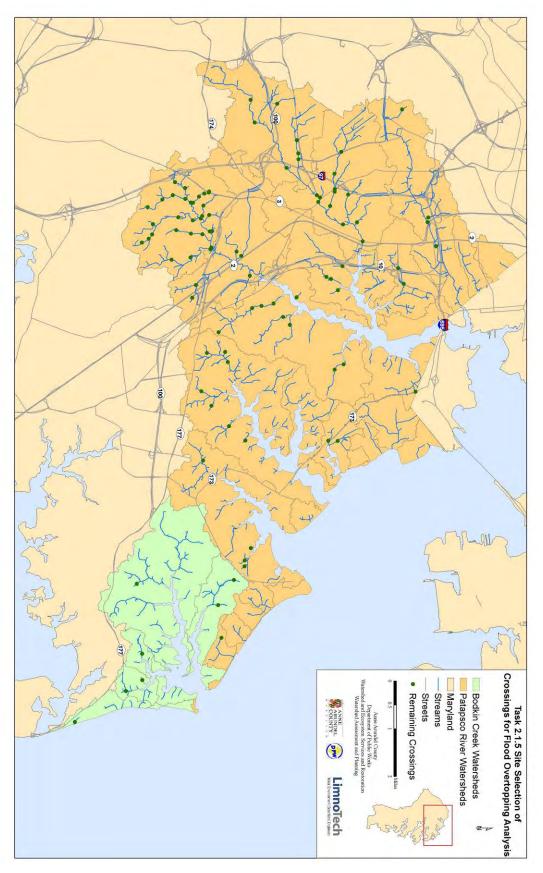


Figure 2: Crossings Meeting the Road Type and Perenniality Criteria

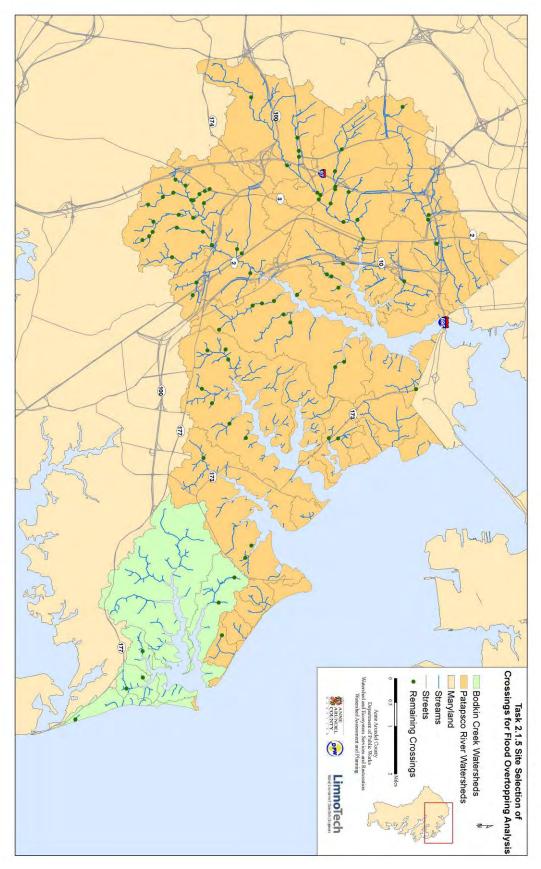


Figure 3: Crossings Meeting Road Type, Perenniality and Field Conditions Criteria

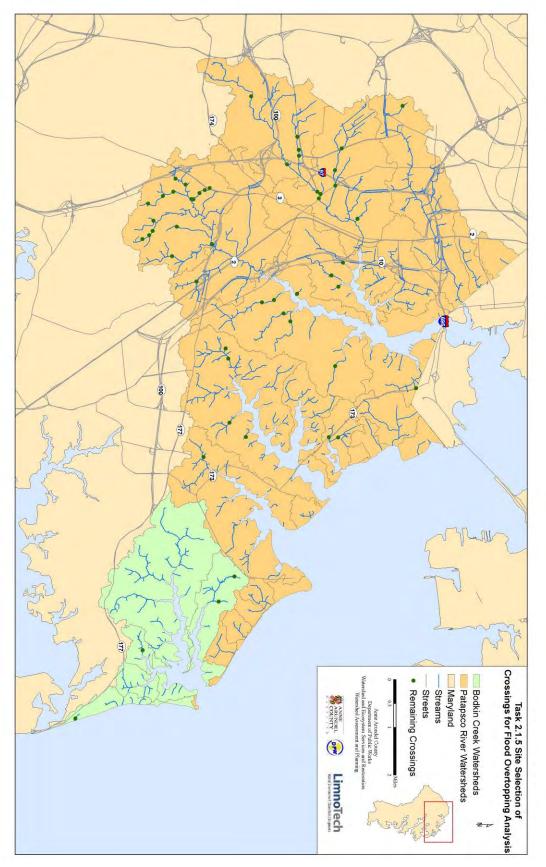
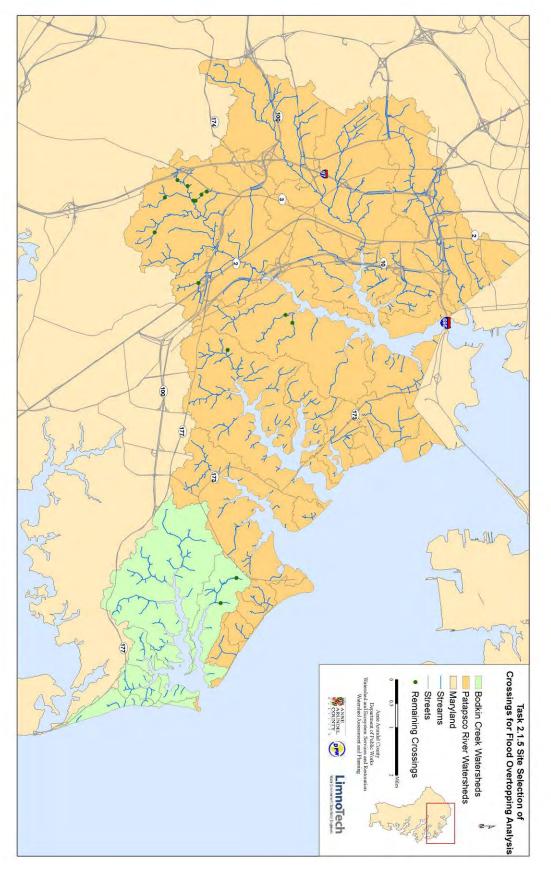
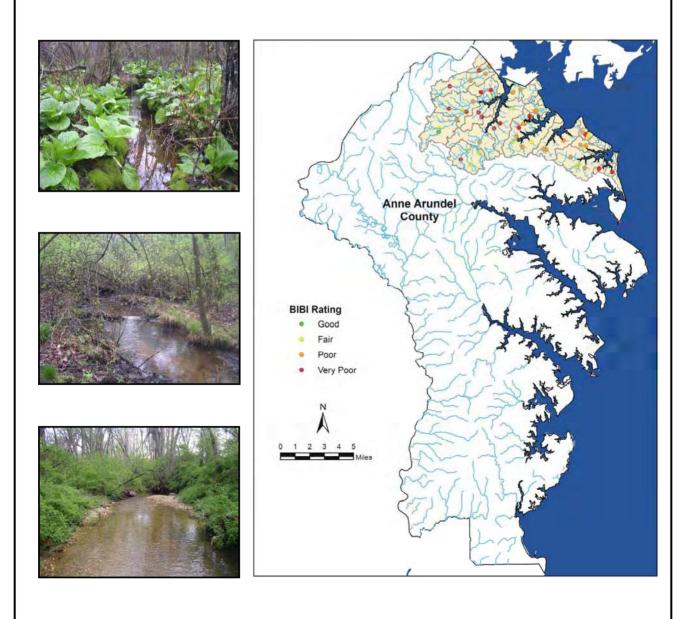



Figure 4: Crossings Meeting Road Type, Perenniality, Field Condition, and Age Criteria

Figure 5: Crossings Recommended for Surveying

This page is blank to facilitate double sided printing.

APPENDIX B


BIOASSESSMENT REPORT

This page is blank to facilitate double sided printing.

Targeted Biological Assessment of Streams in Patapsco Tidal and Bodkin Creek Watersheds, Anne Arundel County, Maryland: 2009

THIS PAGE INTENTIONALLY LEFT BLANK

Targeted Biological Assessment of Streams in Patapsco Tidal and Bodkin Creek Watersheds, Anne Arundel County, Maryland: 2009

Prepared by

Versar, Inc. 9200 Rumsey Road, Suite 100 Columbia, MD 21045

Prepared for

Anne Arundel County Department of Public Works Watershed, Ecosystem, and Restoration Services 2662 Riva Road Annapolis, MD 21401

October 2009

THIS PAGE INTENTIONALLY LEFT BLANK

ACKNOWLEDGEMENTS

The principal authors of this document were Nancy Roth, Elizabeth Franks, Brenda Morgan, and Jodi Dew-Baxter, of Versar. They were assisted by Versar staff including Dr. Mark Southerland, Sherian George, and Gail Lucas. Versar field staff led by Brenda Morgan included Martin Berlett, Andrew Brehmer, Dawn Chandros, Elizabeth Franks, Theresa Hage, Steve Harriott, Brent Hood, Kristine Sillett, and Charles Tonkin. Versar laboratory staff led by Lisa Scott completed macroinvertebrate sample sorting, and identification was performed by Mike Winnell of Freshwater Benthic Services. The appropriate citation for this report is:

Roth, N.E., E.A. Franks, B.D. Morgan, and J. Dew-Baxter. 2009. Biological Assessment of Targeted Streams in Patapsco Tidal and Bodkin Creek Watersheds, Anne Arundel County, Maryland: 2009. Prepared by Versar, Inc., Columbia, MD for Anne Arundel County Department of Public Works, Watershed, Ecosystem, and Restoration Services, Annapolis, Maryland. 52 pp., plus Appendices.

For more information about this report, please contact

Hala E. Flores, P.E. Program Manager Watersheds, Ecosystem and Restoration Services Bureau of Engineering Department of Public Works Anne Arundel County Government, MD 2662 Riva Road Annapolis, MD 21401 Phone : (410) 222-4240 Ext (3320) Email: <u>hala.flores@aacounty.org</u>

THIS PAGE INTENTIONALLY LEFT BLANK

TABLE OF CONTENTS

Page

AC	KNOV	VLEDGEMENTS	iii
1.	INTE	RODUCTION	1-1
2.	MET	HODS	2-1
	2.1	SITE SELECTION, PROPERTY OWNER NOTIFICATION, AND	
		CATCHMENT ANALYSIS	2-1
	2.2	FIELD AND LABORATORY DATA COLLECTION	
		2.2.1 Water Quality Sampling Methods	
		2.2.2 Biological Sampling Methods	
		2.2.3 Biological Sample Subsampling and Laboratory Identification	
		2.2.4 Physical Habitat Assessment	
	2.3	DATA ENTRY AND DATA ANALYSIS METHODS	
		2.3.1 Water Quality Sampling Data	
		2.3.2 Biological Sampling Data	
		2.3.3 Physical Habitat Assessment Data	
		2.3.4 Quality Assurance/Quality Control	2-7
3.	DESI	JLTS	3_1
5.	3.1	SITE LOCATIONS, DRAINAGE AREAS, AND LAND USE	
	3.2	MONITORING AND ASSESSMENT RESULTS	
	5.2	3.2.1 Water Quality Results	
		3.2.2 Biological Monitoring Results	
		3.2.3 Physical Habitat Assessment Results	
		3.2.4 Quality Assurance and Quality Control	
_			
4.			
	4.1	LAND USE	
	4.2 4.3	WATER CHEMISTRY	
	4.3 4.4	BIOLOGICAL CONDITION	
	4.4 4.5	HABITAT ASSESSMENT INTEGRATED ASSESSMENT	
	4.3	INTEGRATED ASSESSMENT	
5.	REF	ERENCES	5-1
AP.	PEND	ICES	

THIS PAGE INTENTIONALLY LEFT BLANK

LIST OF TABLES

Table		Page
2-1.	Parameters assessed in the U.S. EPA's Rapid Bioassessment Protocol Habitat Assessment procedure for low-gradient streams	2-3
2-2.	Parameters assessed in MBSS's habitat assessment procedure for Coastal Plain streams	2-4
2-3.	Water Quality criteria as established by Maryland Department of the Environment for Use I streams	2-5
2-4.	Metrics included in the MBSS Coastal Plain Benthic Index of Biotic Integrity and description	2-5
2-5.	Scoring Criteria for metrics in the MBSS Coastal Plain Benthic Index of Biotic Integrity	2-6
2-6.	BIBI scoring and Narrative Rating	2-6
2-7.	RBP Habitat Assessment score and ratings.	2-7
2-8.	Coastal Plain PHI scoring and narrative ratings	2-7
3-1.	Site names, subwatersheds, and catchment areas for 50 targeted sites and 5 QC sites sampled in Patapsco Tidal and Bodkin Creek watersheds, Anne Arundel County, 2009.	3-3
3-2.	<i>In-situ</i> water quality results for 50 targeted sites sampled in Patapsco Tidal and Bodkin Creek watersheds, Anne Arundel County, 2009	3-4
3-3.	Benthic Index of Biotic Integrity Score and Narrative Ratings for 50 targeted sites and 5 QC sites sampled in Patapsco Tidal and Bodkin Creek watersheds, Anne Arundel County, 2009.	3-7
3-4.	RBP and PHI Scores and associated ratings for 50 targeted sites and 5 QC sites sampled in Patapsco Tidal and Bodkin Creek watersheds, Anne Arundel County, 2009	. 3-12
4-1.	Comparison of sample site BIBI ratings to RBP Habitat ratings at 50 targeted stream sampled in Patapsco Tidal and Bodkin Creek watersheds, Anne Arundel County, Maryland, 2009.	

LIST OF TABLES (CONTINUED)

Table

Page

4-2.	Comparison of sample site BIBI ratings to PHI Habitat ratings at 50 targeted stream sites sampled in Patapsco Tidal and Bodkin Creek watersheds, Anne Arundel County, Maryland, 2009. Cells shaded in green contain 3-digit abbrevia- tions for stream sites where the biological community was less impaired than	
	habitat scores would predict	4-7
4-3.	Water quality exceedances by site	4-9
4-4.	Water quality exceedances by site	.4-11

LIST OF FIGURES

Figure		Page
1-1.	Location of Patapsco Tidal / Bodkin Creek watersheds in Anne Arundel County, Maryland	1-2
1-2.	Subwatersheds of Patapsco Tidal / Bodkin Creek watersheds	1-3
1-3.	Anne Arundel County watersheds and MDE Tributary Areas	1-4
3-1.	50 targeted sites sampled in Patapsco Tidal and Bodkin Creek watersheds, Anne Arundel County, 2009	3-2
3-2.	Benthic macroinvertebrate results (BIBI ratings) for 50 targeted sites sampled in Patapsco Tidal and Bodkin Creek watersheds, Anne Arundel County, 2009	3-6
3-3 (a -g).	Histograms depicting distributions of individual BIBI metric values for 50 targeted sites sampled in Patapsco Tidal and Bodkin Creek watersheds, Anne Arundel County, MD, 2009.	3-9
3-4.	RBP Habitat Assessment results for 50 targeted sites sampled in Patapsco Tidal and Bodkin Creek watersheds, Anne Arundel County, 2009	3-10
3-5 (a – f).	Histograms depicting distributions of selected RBP habitat assessment metric scores for 50 targeted sites sampled in sampled in Patapsco Tidal and Bodkin Creek watersheds, Anne Arundel County, MD, 2009	.3-11
3-6.	PHI habitat assessment results for 50 targeted sites sampled in Patapsco Tidal and Bodkin Creek watersheds, Anne Arundel County, 2009	3-14
4-1.	Distribution of PHI scores for 50 targeted sites sampled in Patapsco Tidal and Bodkin Creek watersheds, Anne Arundel County, MD, 2009	4-3
4-2.	Comparison of PHI and RBP Habitat Assessment scores for 50 targeted sites sampled in Patapsco Tidal and Bodkin Creek watersheds, Anne Arundel County, Maryland, 2009.	4-3
4-3.	Benthic macroinvertebrate (BIBI ratings) and habitat assessment results for 50 targeted sites sampled in Patapsco Tidal and Bodkin Creek watersheds, Anne Arundel County, 2009	4-5

THIS PAGE INTENTIONALLY LEFT BLANK

1. INTRODUCTION

Anne Arundel County is required to conduct a systematic assessment of water quality within all County watersheds under its National Pollutant Discharge Elimination System (NPDES) Municipal Separate Storm Sewer System (MS4) permit issued by the Maryland Department of the Environment (MDE). The County contracted Versar, Inc., in 2009 to conduct a targeted assessment of the biological communities and physical habitats for non-tidal streams in the Patapsco Tidal and Bodkin Creek watersheds. The project included water quality assessment, benthic macroinvertebrate collection and assessment, and physical habitat assessments at fifty targeted sites pre-selected by Anne Arundel County. The Targeted Biological Assessment of Streams in Patapsco Tidal and Bodkin Creek Watersheds fulfills part of the County's requirements under its NPDES MS4 permit.

The Watershed Assessment and Planning Program is part of the Watershed, Ecosystem, and Restoration Services Division within the Anne Arundel County Department of Public Works. This program developed and maintains the County's Watershed Management Tool (WMT). The WMT is a comprehensive watershed database of GIS layers and field data. It includes different models to assess a watershed in terms of water quality, biological condition, habitat condition, and land use. Data collected in this study will be incorporated into the WMT, coupled with other watershed data, and compiled as part of future assessment efforts to complete a comprehensive watershed assessment.

The Patapsco Tidal and Bodkin Creek watersheds, located at the northern edge of Anne Arundel County (Figure 1-1), contain 36,101 acres and approximately 127 stream miles. The watersheds were subdivided into subwatersheds (Figure 1-2) by the County's Watershed Assessment and Planning Program for targeted site selection. These watersheds are within MDE 8-digit watersheds 02130902 (Bodkin Creek), 02130903 (Baltimore Harbor), and a small part of 02131001 (West Chesapeake Bay). They fall within Maryland's Patapsco/Back River tributary area (Figure 1-3).

Biological data collected in this project will also support the ongoing countywide Aquatic Biological Monitoring Program. Begun in 2004, the primary goals of this program are to assess the status of the biological stream resources of Anne Arundel County and to establish a baseline for comparing future assessments, to assess the status and trends of the biological stream resources, and to relate them to specific programmatic activities. The Biological Monitoring Program is modeled after the state's Maryland Biological Stream Survey (MBSS), and uses field and analysis methods directly comparable to the MBSS. Using a rotating basin design, a subset of watersheds are sampled each year, resulting in all watersheds within the County being sampled over a 5-year period. The Patapsco Tidal and Bodkin Creek study assessed streams within three primary sampling units (PSUs) defined by the countywide monitoring and assessment strategy (PSUs 4 Sawmill Creek, 5 Marley Creek, and 6 Bodkin Creek).

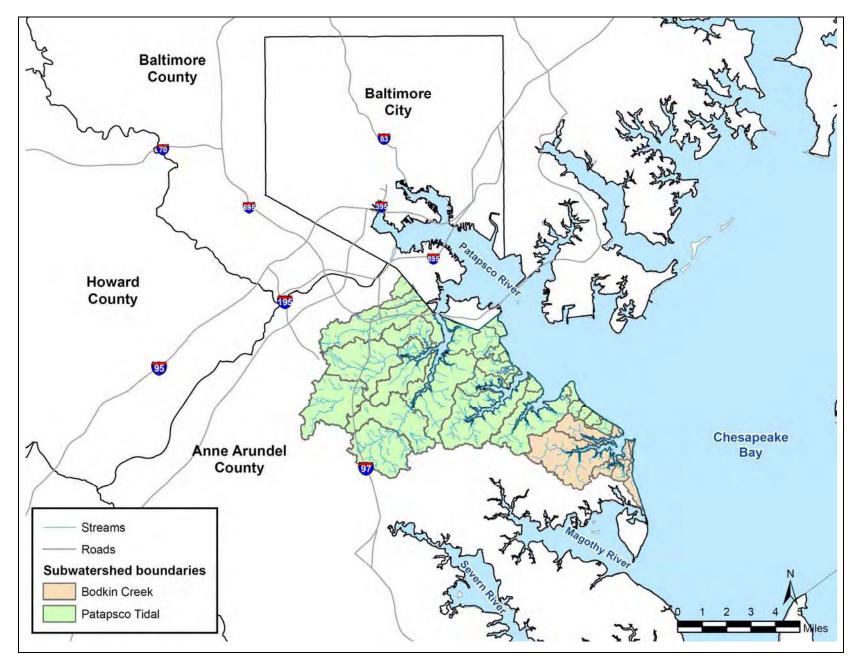


Figure 1-1. Location of Patapsco Tidal / Bodkin Creek watersheds in Anne Arundel County, Maryland

1-2

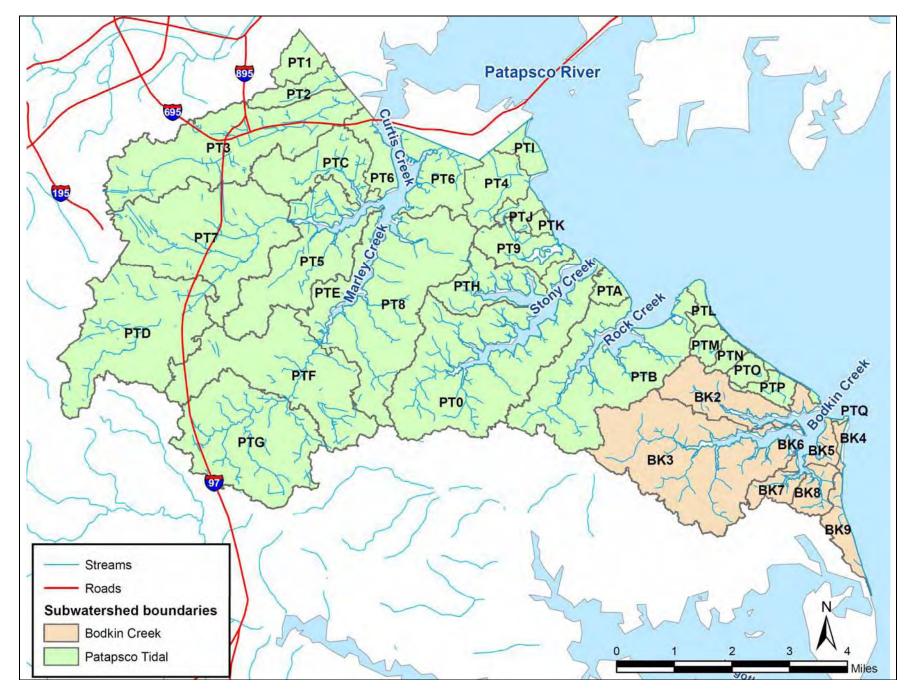


Figure 1-2. Subwatersheds of Patapsco Tidal / Bodkin Creek watersheds

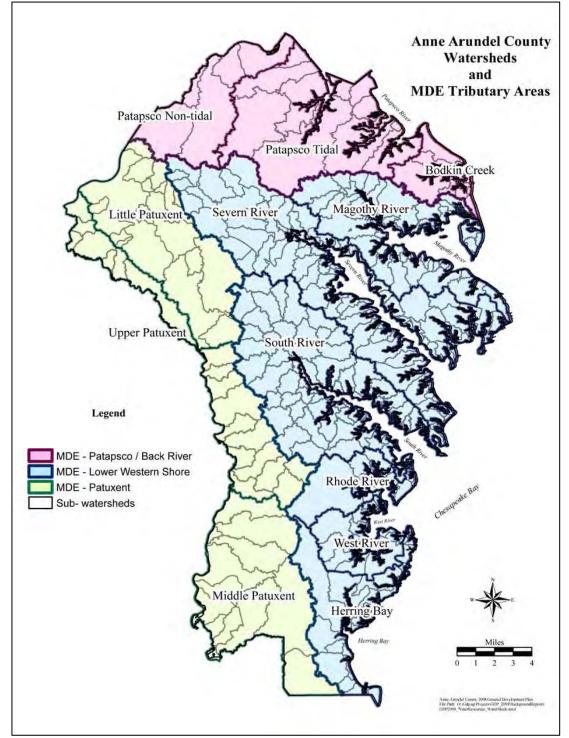


Figure 1-3. Anne Arundel County watersheds and MDE Tributary Areas (from Anne Arundel County 2009)

2. METHODS

2.1 SITE SELECTION, PROPERTY OWNER NOTIFICATION, AND CATCHMENT ANALYSIS

Site locations were pre-selected using a GIS by DPW's Watershed Assessment and Planning Program staff. At least one site was placed in each subwatershed, typically at the downstream end of the subwatershed. Larger subwatersheds were allocated two or more sites, distributed geographically to provide a good characterization of the stream network.

Sites were assigned alphanumeric site names of the following format: BK8-901-T-2009, with the first three characters indicating the subwatershed code (starting with BK for Bodkin, PT for Patapsco Tidal), followed by a three-digit site code, T for targeted site, and 2009 for the year.

Five duplicate sites were assigned site identification numbers that allow for quick reference to their partner site. Each of the duplicate sites has a "D" as its fourth digit (i.e., BK3-D07-T-2009). The remainder of the site identification number matches its partner site, i.e., site BK3-D07-T-2009 is the duplicate of site BK3-907-T-2009.

Field crews used maps with aerial photos and property parcel boundaries to determine which landowners they would need to visit, while in the field, to obtain permission. Landowners were presented with a letter from the county explaining the survey and its purpose and requesting permission for field crews to access stream sites. Seven of the original site locations were determined to be unsampleable for various reasons (unable to obtain permission from landowner, mapped non-tidal stream channels determined nonexistent through field reconnaissance, or other factors). Therefore, these seven sites were relocated to alternative locations. The replacement site locations were determined in consultation with Anne Arundel County's Watershed Assessment and Planning Program staff. When possible, replacement sites were within the same stream subwatershed as the original. When no non-tidal reaches were found in the same vicinity or all streams in a subwatershed were on the same inaccessible property, sites were replaced with new sites in a different subwatershed.

Anne Arundel County staff calculated catchment drainage area for each site, utilizing Arc Hydro to first create a terrain model for the Patapsco Tidal and Bodkin Creek watersheds. The terrain model utilizes the LIDAR derived Digital Evolution Model (DEM) with 1-meter resolution coverage from 2004. Subsurface structures such as stormdrains and culverts are burned into the DEM to enhance drainage area delineation accuracy. Based on this information, Arc Hydro formulates the following grids and layers which are utilized in automating the drainage area delineation to any point of investigation within the watershed: flow direction, flow accumulation, stream, catchment, and adjoint catchments.

The resulting drainage areas were overlain with Anne Arundel County impervious surface and 2007 land use data to characterize the land upstream of individual sampled sites.

2.2 FIELD AND LABORATORY DATA COLLECTION

2.2.1 Water Quality Sampling Methods

Field *in situ* water quality sampling was conducted at each monitoring site, including the duplicate sites, according to methods prescribed in the County Sampling and Analysis Plan (SAP) (Tetra Tech 2007). Water quality meters were regularly inspected, maintained, and calibrated to ensure proper usage and accuracy of the readings. Field crews followed methods as detailed in Versar's Standard Operating Procedure for Calibration of Suite Field Water Quality Monitoring Equipment (Sondes). Calibration logs were kept and regularly checked by the Field Manager. A properly calibrated, multi-parameter water quality monitoring sonde (In-situ Troll 9500, YSI 600XL, or YSI 6800) was used. Parameters measured included temperature, dissolved oxygen, conductivity, and pH.

2.2.2 Biological Sampling Methods

Benthic monitoring was conducted during the MBSS spring index period (March 1 - May 1) and employed the stream sampling methods specified in the County's SAP (Tetra Tech 2007), which closely follows the MBSS protocols (DNR 2007). At each 75-m sample site, benthic macroinvertebrates were collected using a D-net to collect organisms from a combination of habitats that support the most diverse macroinvertebrate community within a sample segment as per MBSS protocols. At each site, 20 "jabs" of the net were distributed among available habitats, including submerged vegetation, overhanging bank vegetation, leaf packs, organic mats, stream bed substrate, submerged woody debris, and rocks. The 20 jabs were composited into a single macroinvertebrate sample per site, which were preserved in the field for laboratory identification.

Benthic sample collection was completed between April 2 and April 30, 2009. Fifty-five benthic samples were collected, including samples from 50 targeted sites and QC samples (field duplicates) collected just upstream of five randomly selected targeted sites.

2.2.3 Biological Sample Subsampling and Laboratory Identification

In the lab, benthic samples were subsampled and sorted, and oligochaetes and chironomids were permanent slide-mounted to allow identification to genus level (family level for oligochaetes) according to the County's SAP (Tetra Tech 2007) and accompanying Standard Operating Procedures (SOPs). Only qualified sorters, those with a history of sorting freshwater samples using MBSS methods, were employed. As a quality control check, 10% of every technician's samples were resorted by a Quality Control Officer (with over 20 years experience in sample sorting procedures) to ensure that samples were thoroughly picked.

Benthic identifications were performed by Senior Taxonomist Mr. Mike Winnell of Freshwater Benthic Services. As per the County protocol, 100- to 120-organism subsamples were identified to genus level or as specified in the RFP. Results were recorded on a bench sheet. In addition, five samples (10% of the original 50) were randomly selected for re-identification by an independent taxonomist (Versar's in-house macroinvertebrate taxonomist).

2.2.4 Physical Habitat Assessment

Physical habitat was assessed at each site and at the five duplicate sites using U.S. Environmental Protection Agency (EPA) Rapid Bioassessment Protocols (RBP) for low-gradient streams (Barbour et al. 1999) and MBSS Stream Habitat Assessment methods (Paul et al. 2002). These procedures, although similar, each provide information that will be useful to the County in assessing habitat quality and ensuring comparability with other programs' data. Since biological potential is limited by the quality of the stream's physical habitat, an assessment of physical habitat is an important component of any biological stream survey. Habitat assessments took place concurrently with benthic macroinvertebrate sampling, from April 2 to April 30, 2009.

2.2.4.1 RBP Methods

EPA's RBP Habitat Assessment procedure is a well-established method for evaluating the structure and function of the physical habitat in a stream and its surrounding riparian area. The RBP protocol consists of ten parameters appropriate for the evaluation of stream habitat (Table 2-1).

Table 2-1. Parameters assessed in the U.S. EPA's Rapid Bioassessment Protocol (RBP) Habitat Assessment procedure for low-gradient streams		
Parameter	Rating Scale	
1. Epifaunal Substrate/Available Cover	0 to 20	
2. Pool Substrate Characterization	0 to 20	
3. Pool Variability	0 to 20	
4. Sediment Deposition	0 to 20	
5. Channel Flow Status	0 to 20	
6. Channel Alteration	0 to 20	
7. Channel Sinuosity	0 to 20	
9 Dank Stability (and hank is say a damarataly)	0 to 10 left bank,	
8. Bank Stability (each bank is scored separately)	0 to 10 right bank	
0. Vacatative Protection (asch hank is seened concertate)	0 to 10 left bank,	
9. Vegetative Protection (each bank is scored separately)	0 to 10 right bank	
10 Diparian Vagatativa Zana Width (analy hank is saarad sanarataly)	0 to 10 left bank,	
10. Riparian Vegetative Zone Width (each bank is scored separately)	0 to 10 right bank	

The habitat assessment process involves rating each of the parameters on a 0 - 20 scale within four categories:

- Poor: 0-5
- Marginal: 6-10
- Suboptimal: 11-15
- Optimal: 16-20

Scores increase as habitat quality increases. To ensure consistency in the evaluation procedure, descriptions of the physical parameters and relative criteria are included on the rating form.

2.2.4.2 PHI Methods

MBSS stream habitat assessment methods (Paul et al. 2002) were used to assess the physical habitat at each site and at the five duplicate sites using the Coastal Plain Physical Habitat Index (PHI). In developing the PHI, MBSS identified six parameters that have the most discriminatory power for Coastal Plain streams. These parameters were evaluated on a 0 to 20 scale at each sampling site and used to calculate the PHI (Table 2-2).

Table 2-2. Parameters assessed in MBSS's habitat assessment procedure (Physical Habitat Index, or PHI) for Coastal Plain streams		
Parameter	Rating Scale	
1. Remoteness	0 to 20	
2. Shading	0 to 20	
3. Epibenthic Substrate	0 to 20	
4. Instream Habitat	0 to 20	
5. Woody Debris and Rootwads	0 to 20	
6. Bank Stability	0 to 20	

Digital photographs of each site were taken to record observed conditions.

2.3 DATA ENTRY AND DATA ANALYSIS METHODS

2.3.1 Water Quality Sampling Data

Water quality data were entered into a MS Access database that included custom data entry screens that mimicked field data sheets to minimize data entry errors. Database quality assurance protocols were followed including automatic range checks and data manager review.

Double-entry ensured that any transcription errors were detected and corrected prior to data analysis. Data were backed up at regular intervals.

The Maryland Department of the Environment (MDE) establishes water quality standards for each designated Stream Use Classification. Of the water quality parameters measured in this study, acceptable standards for Use I Streams have been established for pH, DO, and temperature (Table 2-3).

Table 2-3. Water Quality criteria as established by Maryland Department of the		
Environment (MDE) for Use I streams		
Parameter	Criterion	
pН	Must be between 6.5 and 8.5 pH units	
DO	May not be less than 5 mg/l at any time	
temperature	Cannot exceed 90 °F (32 °C) or ambient temperature of the	
	surface water, whichever is greater.	

We compared *in situ* values measured at stream sites in this study with these standards to determine whether any sites exceeded the acceptable limits.

2.3.2 Biological Sampling Data

Benthic macroinvertebrate taxonomic identifications and counts recorded on bench sheets were entered into an Excel spreadsheet. Final data were imported to a MS Access database.

Benthic macroinvertebrate data were analyzed using the Coastal Plain version of the MBSS Benthic Index of Biotic Integrity (BIBI) (Southerland et al. 2007). Metrics included in this IBI are detailed in Table 2-4.

Table 2-4. Metrics included in the MBSS Coastal Plain Benthic Index of Biotic Integri		
(BIBI) and description		
Metric	Description	
Total Number of Taxa	Measures the overall variety of the macroinvertebrate	
	assemblage	
Number of EPT Taxa	Number of taxa in the insect orders Ephemeroptera	
	(mayflies), Plecoptera (stoneflies), and Trichoptera	
	(caddisflies)	
Number of Ephemeroptera Taxa	Number of mayfly taxa	
Percent Intolerant Urban	Percent of sample considered intolerant to urbanization	
	(tolerance values 0-3)	
Percent Ephemeroptera	Percent mayfly nymphs	
Number Scraper Taxa	Number of taxa that scrape food from substrate	
Percent Climbers	Percent of sample that primarily lives on stem type surfaces	

MBSS attributes for each identified taxa, including functional feeding group, habitat preference, and tolerance values, were used in a SAS program to compute BIBI metrics. For a small number of taxa identified in this survey, MBSS attributes were not available. In these instances, attributes were assigned by Versar's senior taxonomist through literature searches. For each BIBI metric at each site, raw values were assigned a score of 1, 3, or 5 based on ranges of values developed for each metric (Table 2-5).

Table 2-5. Scoring Criteria for metrics in the MBSS Coastal Plain Benthic Index of Biotic Integrity (BIBI)			
Madai a	Score		
Metric	5	3	1
Total Number of Taxa	≥ 22	14 - 21	< 14
Number of EPT Taxa	\geq 5	2 - 4	< 2
Number of Ephemeroptera Taxa	≥ 2.0	1 - 1	< 1
Percent Intolerant Urban	≥ 28	10 - 27	< 10.0
Percent Ephemeroptera	≥11	0.8 - 10.9	< 0.8
Number Scraper Taxa	≥ 2	1 - 1	< 1
Percent Climbers	≥ 8.0	0.9 - 7.9	< 0.9

Scores for each metric were averaged to give a scaled BIBI score ranging from 1.0 to 5.0 and a corresponding narrative rating (Table 2-6).

Table 2-6. BIBI scoring and Narrative Rating		
BIBI Score Narrative I		
4.0 to 5.0	Good	
3.0 to 3.9	Fair	
2.0 to 2.9	Poor	
1.0 to 1.9	Very Poor	

2.3.3 Physical Habitat Assessment Data

Using the same methods described for water quality data (Section 2.3.1), physical habitat data were entered into a MS Access database that included custom data entry screens that mimicked field data sheets to minimize data entry errors. Database quality assurance protocols were followed including automatic range checks and data manager review. Double-entry ensured that any transcription errors were detected and corrected prior to data analysis. Data were backed up at regular intervals.

2.3.3.1 RBP Data

Scores for each of the ten individual parameters in the RBP Habitat Assessment (Table 2-1) were added together to give a total score for each site (200 points maximum). The total score was then assigned to one of four categories (Table 2-7) based on its percent comparability to reference conditions. Since pristine reference conditions do not currently exist in Anne Arundel County, the categories used in this assessment were based on reference conditions obtained from nearby Prince George's County streams and watersheds (Stribling et al. 1999).

Table 2-7. RBP Habitat Assessment score and ratings.						
Score						
≥ 151	≥ 75.5	Comparable to Reference				
126 - 150	63.0 - 75.0	Supporting				
97 - 125	48.5 - 62.5	Partially Supporting				
≤ 96	≤ 48.0	Non-supporting				

2.3.3.2 PHI Data Entry and Analysis Methods

The MBSS PHI for Coastal Plain streams was calculated using numerical ratings of six habitat parameters evaluated on a 0 to 20 scale (Table 2-2). Some parameters were drainage area dependent, and were scaled accordingly using drainage areas calculated using GIS (Section 2.1). Each raw parameter score was then transposed to a 0 to 100 scale. The average of these scores was calculated to give the final PHI score. Final scores were assigned narrative ratings based on MBSS designations (Table 2-8).

Table 2-8. Coastal Plain PHI scoring and narrative ratings			
PHI Score Narrative Rating			
81.0 - 100	Minimally Degraded		
66.0 - 80.9	Partially Degraded		
51.0 - 65.9	Degraded		
0.0 - 50.9	Severely Degraded		

2.3.4 Quality Assurance/Quality Control

Benthic taxonomy results, benthic field duplicate results, and habitat field duplicate results were analyzed to assess Quality Assurance/Quality Control (QA/QC). For details on methods used, see Appendix B.

THIS PAGE INTENTIONALLY LEFT BLANK

3. RESULTS

Overall findings are summarized in this section, while site-specific summaries of stream assessment data are provided in Appendix A. QA/QC results are provided in Appendix B.

3.1 SITE LOCATIONS, DRAINAGE AREAS, AND LAND USE

Site are mapped in Figure 3-1 and listed by subwatershed in Table 3-1. Catchment area data are listed for each site. Site catchments range in area from 10.5 to 5317.20 acres. Data characterizing land uses and impervious surface area in each site catchment are included in the site summaries in Appendix A.

Residential, commercial and various industrial and transportation uses are well-represented in the watershed. As expected, given the density of urban/suburban development in the watersheds, impervious surface in site catchments was extensive, ranging from 2.5 to 67.2% of catchment area (mean 26.7%). The majority of sites (26) had more than 25% impervious surface, a threshold at which severe stream degradation is often observed. Another 17 sites had between 10 and 25% impervious surface, a level commonly associated with moderate stream degradation. Only 7 sites had catchments with less than 10% impervious surface.

3.2 MONITORING AND ASSESSMENT RESULTS

3.2.1 Water Quality Results

Water chemistry data are summarized in Table 3-2.

At the 50 sites, *in situ* water temperatures ranged from a low of 10.3 °C to a high of 19.2 °C. These temperatures were acceptable according to MDE criteria. Dissolved oxygen levels were all above acceptable limits, and ranged from 6.8 mg/l to 11.7 mg/l. pH values ranged from a low of 6.1 to a high of 8.68, with nine sites having pH values below the COMAR water quality standard of 6.5 and one site having a pH value above the COMAR standard of 8.5. Eleven sites had pH values greater than 8.0, but not above the COMAR water quality standard. Finally, conductivity values ranged from a low of 0.083 mS/cm to a high of 0.857 mS/cm. MDE does not have any water quality standards for conductivity, but values above 0.500 mS/cm could generally be considered elevated (EPA 1997). Six sites had conductivity values above 0.500 mS/cm. These single-point-in-time measures only provide limited information on the parameters measured and provide no data to evaluate nutrient loads or other potential water chemistry problems.

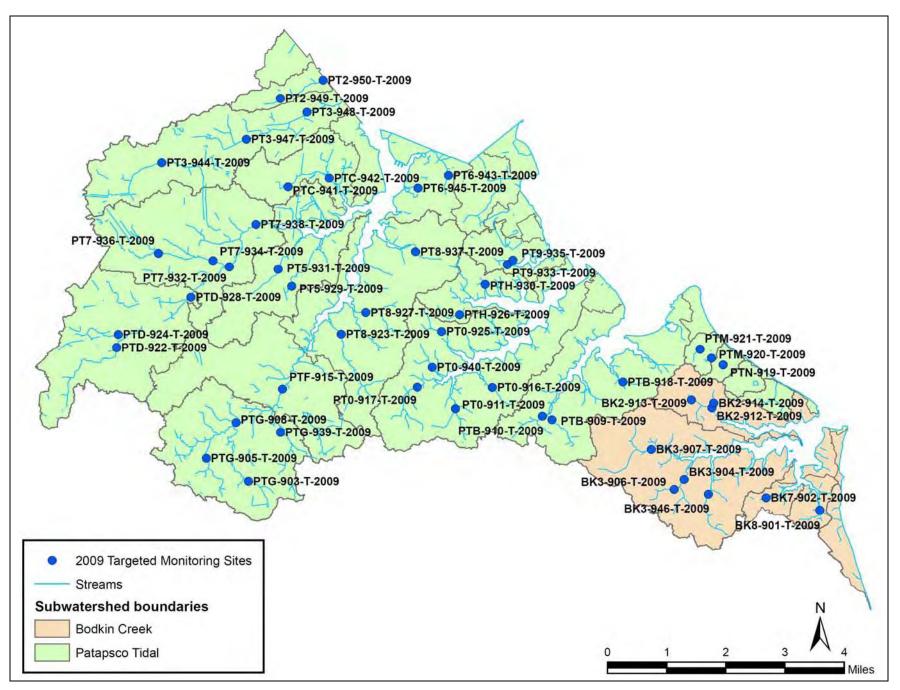


Figure 3-1. 50 targeted sites sampled in Patapsco Tidal and Bodkin Creek watersheds, Anne Arundel County, 2009

Arundel Co		
Site	Subwatershed	Catchment Area (acres)
BK2-912-T-2009	Back Creek	381.50
BK2-913-T-2009	Back Creek	274.66
BK2-914-T-2009	Back Creek	54.85
BK3-904-T-2009	Main Creek	584.73
BK3-906-T-2009	Main Creek	253.58
BK3-907-T-2009	Main Creek	748.72
BK3-946-T-2009	Main Creek	269.19
BK7-902-T-2009	Wharf Creek	84.41
BK8-901-T-2009	Locust Cove	96.48
PT0-911-T-2009	Stony Creek	269.73
РТО-916-Т-2009	Stony Creek	187.71
РТО-917-Т-2009	Stony Creek	554.26
РТО-925-Т-2009	Stony Creek	129.96
РТО-940-Т-2009	Stony Creek	150.27
PT2-949-T-2009	Cabin Branch 2	144.68
РТ2-950-Т-2009	Cabin Branch 2	342.47
PT3-944-T-2009	Cabin Branch	786.41
РТЗ-947-Т-2009	Cabin Branch	1808.57
PT3-948-T-2009	Cabin Branch	2421.90
PT5-929-T-2009	Furnace Creek	126.52
PT5-931-T-2009	Furnace Creek	611.94
PT6-943-T-2009	Curtis Creek	174.18
PT6-945-T-2009	Curtis Creek	13.83
PT7-932-T-2009	Sawmill Creek 1	4206.01
PT7-934-T-2009	Sawmill Creek 1	880.52
PT7-936-T-2009	Sawmill Creek 1	566.97
PT7-938-T-2009	Sawmill Creek 1	5317.20
РТ8-923-Т-2009	Marley Creek 1	624.98
PT8-927-T-2009	Marley Creek 1	264.23
PT8-937-T-2009	Marley Creek 1	304.69
РТ9-933-Т-2009	Cox Creek	170.91
РТ9-935-Т-2009	Cox Creek	131.76
PTB-909-T-2009	Rock Creek	319.38
PTB-910-T-2009	Rock Creek	303.19
PTB-918-T-2009	Rock Creek	114.44
PTC-941-T-2009	Back Creek	346.78
PTC-942-T-2009	Back Creek	824.65
PTD-922-T-2009	Sawmill Creek 2	1082.06
PTD-924-T-2009	Sawmill Creek 2	247.75
PTD-928-T-2009	Sawmill Creek 2	2637.77
PTF-915-T-2009	Marley Creek 3	2638.60
PTG-903-T-2009	Marley Creek 4	167.96
PTG-905-T-2009	Marley Creek 4	293.40

Table 3-1. (Continued)		
Site	Subwatershed	Catchment Area (acres)
PTG-908-T-2009	Marley Creek 4	1554.46
PTG-939-T-2009	Marley Creek 4	340.87
PTH-926-T-2009	Nabbs Creek	154.94
РТН-930-Т-2009	Nabbs Creek	119.01
PTM-920-T-2009	Hines Bog Pond	48.43
PTM-921-T-2009	Hines Bog Pond	45.31
PTN-919-T-2009	Hines Bog	10.50
Duplicate Sites for QC		
BK3-D07-T-2009	Main Creek	748.72
PT0-D17-T-2009	Stony Creek	554.26
PT3-D47-T-2009	Cabin Branch	1808.57
PTF-D15-T-2009	Marley Creek 3	2638.60
PTG-D39-T-2009	Marley Creek 4	340.87

Table 3-2. *In-situ* water quality results for 50 targeted sites sampled in Patapsco Tidal and Bodkin Creek watersheds, Anne Arundel County, 2009. Dark-shaded cells represent values that were outside acceptable COMAR water quality standards (i.e. pH values less than 6.5 or pH values greater than 8.5). Light-shaded cells represent values that are considered elevated (i.e. pH values greater than 8.0, conductivity values greater than 0.500 mS/cm).

	Conductivity values greater than 0.500 ms/cm).						
Site	Temperature	Dissolved Oxygen	pН	Conductivity			
	(°C)	(mg/L)		(mS/cm)			
BK2-912-T-2009	11.3	8.4	7.05	0.155			
BK2-913-T-2009	11.8	8.4	6.30	0.191			
BK2-914-T-2009	13.1	7.4	7.34	0.222			
BK3-904-T-2009	11.2	8.1	6.33	0.115			
BK3-906-T-2009	14.9	7.9	6.56	0.162			
BK3-907-T-2009	11.0	10.2	8.13	0.236			
BK3-946-T-2009	16.1	6.8	6.62	0.289			
BK7-902-T-2009	11.5	9.83	6.35	0.105			
BK8-901-T-2009	11.0	8.7	6.88	0.121			
PT0-911-T-2009	11.5	10	7.15	0.554			
PT0-916-T-2009	11.7	8.7	8.01	0.205			
PT0-917-T-2009	11.3	11.0	8.30	0.198			
PT0-925-T-2009	14.4	10.5	7.73	0.083			
PT0-940-T-2009	13.6	7.0	6.98	0.857			
PT2-949-T-2009	10.6	9.1	6.93	0.513			
PT2-950-T-2009	13.8	8.5	7.02	0.164			
PT3-944-T-2009	17.2	8.3	6.13	0.285			
PT3-947-T-2009	11.9	11.7	7.98	0.339			
PT3-948-T-2009	11.4	10.7	7.02	0.652			
PT5-929-T-2009	11.9	11.3	7.32	0.540			
PT5-931-T-2009	18.4	11.6	7.04	0.497			

Table 3-2. (Continued)						
Site	Temperature	Dissolved Oxygen	pН	Conductivity		
	(°C)	(mg/L)		(mS/cm)		
PT6-943-T-2009	10.9	8.0	7.91	0.183		
PT6-945-T-2009	14.7	9.5	8.14	0.219		
PT7-932-T-2009	16.5	10.3	6.80	0.281		
PT7-934-T-2009	14.5	10.1	7.03	0.189		
PT7-936-T-2009	14.4	9.5	7.91	0.169		
PT7-938-T-2009	16.2	11.2	7.21	0.199		
PT8-923-T-2009	13.8	9.2	6.85	0.260		
PT8-927-T-2009	10.9	11.2	8.01	0.170		
PT8-937-T-2009	15.0	8.0	6.33	0.122		
PT9-933-T-2009	11.8	8.0	7.10	0.302		
PT9-935-T-2009	12.7	9.0	7.20	0.567		
PTB-909-T-2009	16.2	7.6	6.24	0.225		
PTB-910-T-2009	15.7	8.1	6.31	0.265		
PTB-918-T-2009	15.1	8.4	8.07	0.134		
PTC-941-T-2009	12.1	10.9	8.68	0.086		
PTC-942-T-2009	14.0	8.4	6.98	0.402		
PTD-922-T-2009	11.2	10.7	8.37	0.157		
PTD-924-T-2009	12.8	10.8	8.07	0.233		
PTD-928-T-2009	15.2	10.4	7.96	0.208		
PTF-915-T-2009	12.2	10.7	8.10	0.225		
PTG-903-T-2009	11.1	10.3	8.40	0.105		
PTG-905-T-2009	11.5	11.2	8.49	0.103		
PTG-908-T-2009	15.3	9.6	7.84	0.214		
PTG-939-T-2009	19.2	8.6	7.06	0.181		
PTH-926-T-2009	11.7	10.4	7.81	0.126		
PTH-930-T-2009	15.5	11.1	6.93	0.426		
PTM-920-T-2009	12.9	9.0	6.10	0.168		
PTM-921-T-2009	11.7	9.0	6.22	0.222		
PTN-919-T-2009	10.3	9.2	7.41	0.146		

3.2.2 Biological Monitoring Results

BIBI scores ranged from a low of 1.29 (narrative rating of Very Poor) at site PT5-931-T-2009 on Furnace Creek to a high of 4.14 (Good) at site PTD-922-T-2009 on Sawmill Creek (Figure 3-2, Table 3-3). The average BIBI score from the 50 targeted sites in the study was 2.43 (Poor), with standard deviation of 0.72.

Overall, the greatest number of sites (21 out of the 50 targeted sites) were rated Poor according to the BIBI score. Another 16 sites were rated Very Poor, while 12 were rated Fair. Only one was rated Good.

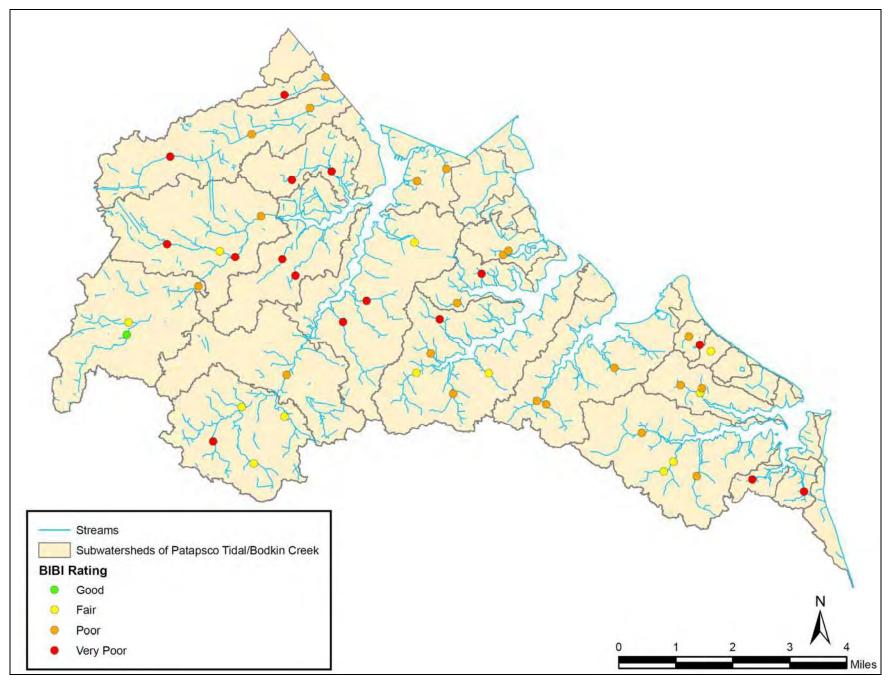


Figure 3-2. Benthic macroinvertebrate results (BIBI ratings) for 50 targeted sites sampled in Patapsco Tidal and Bodkin Creek watersheds, Anne Arundel County, 2009

	e	y (BIBI) Score and Narrative Ratings for 50				
targeted sites and 5 QC sites sampled in Patapsco Tidal and Bodkin Creek watersheds, Anne Arundel County, 2009.						
Site	BIBI Score	BIBI Narrative Rating				
BK2-912-T-2009	3.29	Fair				
BK2-913-T-2009	2.43	Poor				
BK2-914-T-2009	2.43	Poor				
BK3-904-T-2009	3.57	Fair				
BK3-906-T-2009	3.29	Fair				
BK3-907-T-2009	2.71	Poor				
BK3-946-T-2009	2.43	Poor				
BK7-902-T-2009	1.86	Very Poor				
BK8-901-T-2009	1.86	Very Poor				
PT0-911-T-2009	2.43	Poor				
PT0-916-T-2009	3.57	Fair				
PT0-917-T-2009	3.00	Fair				
PT0-925-T-2009	1.86	Very Poor				
PT0-940-T-2009	2.14	Poor				
PT2-949-T-2009	1.57	Very Poor				
PT2-950-T-2009	2.71	Poor				
PT3-944-T-2009	1.86	Very Poor				
PT3-947-T-2009	2.14	Poor				
PT3-948-T-2009	2.43	Poor				
PT5-929-T-2009	1.57	Very Poor				
PT5-931-T-2009	1.29	Very Poor				
PT6-943-T-2009	2.14	Poor				
PT7-932-T-2009	1.29	Very Poor				
PT6-945-T-2009	2.71	Poor				
PT7-934-T-2009	3.00	Fair				
PT7-936-T-2009	1.86	Very Poor				
PT7-938-T-2009	2.43	Poor				
PT8-923-T-2009	1.57	Very Poor				
PT8-927-T-2009	1.86	Very Poor				
PT8-937-T-2009	3.57	Fair				
PT9-933-T-2009	2.71	Poor				
PT9-935-T-2009	2.71	Poor				
PTB-909-T-2009	2.14	Poor				
PTB-910-T-2009	2.43	Poor				
PTB-918-T-2009	2.14	Poor				
PTC-941-T-2009	1.57	Very Poor				
PTC-942-T-2009	1.86	Very Poor				
PTD-922-T-2009	4.14	Good				
PTD-924-T-2009	3.57	Fair				
PTD-928-T-2009	2.43	Poor				
PTF-915-T-2009	2.14	Poor				
PTG-903-T-2009	3.86	Fair				
PTG-905-T-2009	1.57	Very Poor				

Table 3-3. (Continued)					
Site	BIBI Score	BIBI Narrative Rating			
PTG-908-T-2009	3.57	Fair			
PTG-939-T-2009	3.00	Fair			
PTH-926-T-2009	2.14	Poor			
PTH-930-T-2009	1.57	Very Poor			
PTM-920-T-2009	1.57	Very Poor			
PTM-921-T-2009	2.71	Poor			
PTN-919-T-2009	3.00	Fair			
Duplicate Sites for QC					
BK3-D07-T-2009	2.71	Poor			
PT0-D17-T-2009	3.57	Fair			
PT3-D47-T-2009	2.43	Poor			
PTF-D15-T-2009	3.00	Fair			
PTG-D39-T-2009	3.29	Fair			

Distributions of individual BIBI metric values were examined (Figure 3-3 (a through g)). While an approximately normal distribution was present for the Number of Taxa metric (Figure 3-3 (a), other BIBI metrics' distributions tended to be skewed toward lower values (Figure 3-3 (b through g)).

3.2.3 Physical Habitat Assessment Results

RBP Habitat Assessment total scores at the targeted sites ranged from a low score of 104 (52% of reference) to a high score of 169 out of 200 (84.5% of reference; Figure 3-4, Table 3-4). Three of the 50 targeted sites (6%) had total RBP scores above 151 and rated Comparable to Reference. Half of the targeted sites (25 sites) had total RBP scores between 126 and 150, and rated as Supporting. The remainder of the targeted sites (22 sites, or 44%) rated as Partially Supporting. No sites were rated Non-Supporting.

Individual RBP habitat parameters provide additional information about site conditions. Distributions of selected RBP habitat assessment metric scores are presented in Figure 3-5 (a through f). A surprising number of sites were rated high for riparian vegetated protection scores. Both the Riparian Vegetative Zone Width and Bank Vegetative Protection parameters had a high number of sites in the Optimal range (scoring at least 16 out of 20 points), with nearly all scores in the Optimal to Suboptimal categories (scoring 11 or more). In fact, 35 sites received top ratings (Optimal) for Riparian Vegetative Zone Width, and 28 were scored this high for Bank Vegetative Protection.

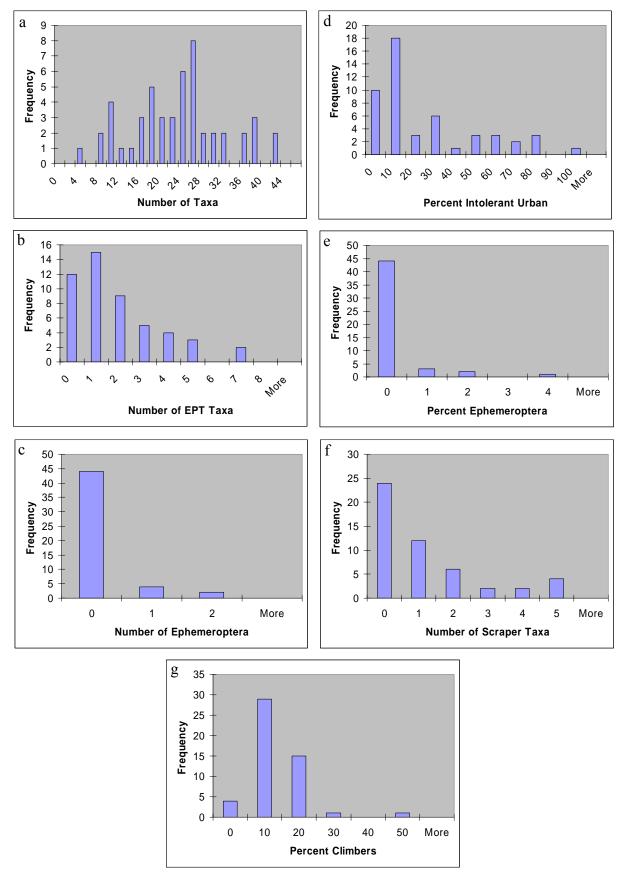


Figure 3-3 (a –g). Histograms depicting distributions of individual BIBI metric values for 50 targeted sites sampled in Patapsco Tidal and Bodkin Creek watersheds, Anne Arundel County, MD, 2009.

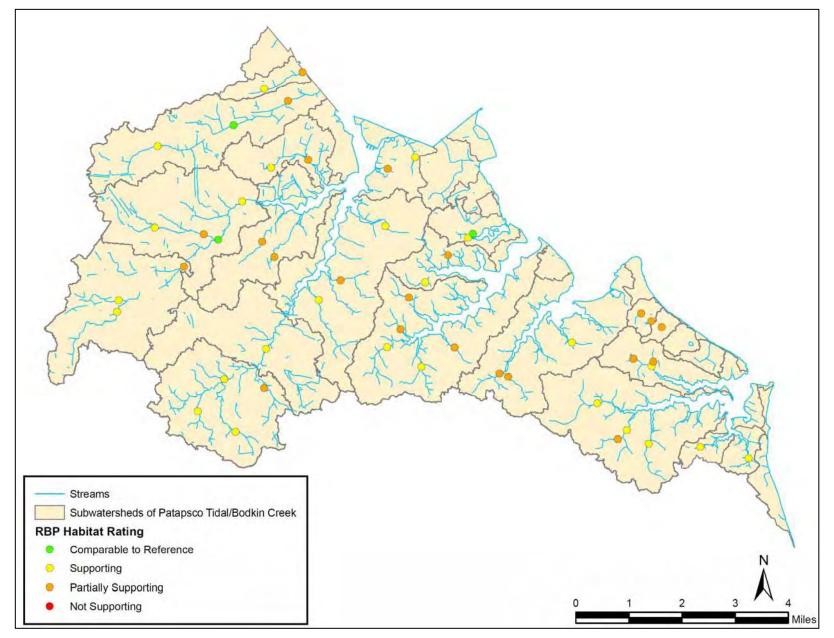


Figure 3-4. RBP Habitat Assessment results for 50 targeted sites sampled in Patapsco Tidal and Bodkin Creek watersheds, Anne Arundel County, 2009

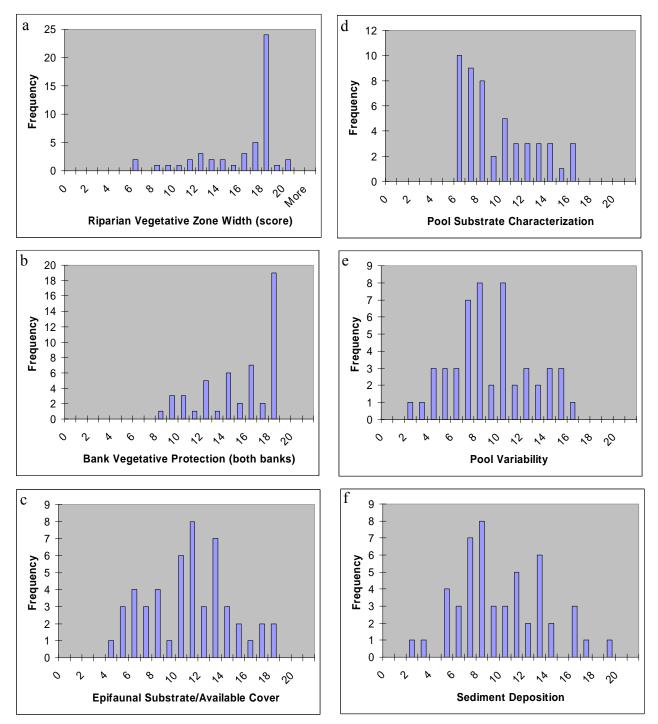


Figure 3-5 (a – f). Histograms depicting distributions of selected RBP habitat assessment metric scores for 50 targeted sites sampled in Sampled in Patapsco Tidal and Bodkin Creek watersheds, Anne Arundel County, MD, 2009.

Table 3-4. RBP and PHI Scores and associated ratings for 50 targeted sites and 5 QC sites						
sampled in Patapsco Tidal and Bodkin Creek watersheds, Anne Arundel County,						
2009.						
2007.	Total RBP	Percent of		PHI	PHI Narrative	
Site	Score	Reference	RBP Classification	Score	Rating	
BK2-912-T-2009	143	71.5	Supporting	77.15	Partially Degraded	
BK2-913-T-2009	121	60.5	Partially Supporting	70.43	Partially Degraded	
BK2-914-T-2009	114	57	Partially Supporting	74.85	Partially Degraded	
BK3-904-T-2009	144	72	Supporting	74.77	Partially Degraded	
BK3-906-T-2009	124	62	Partially Supporting	82.82	Minimally Degraded	
BK3-907-T-2009	148	74	Supporting	81.49	Minimally Degraded	
BK3-946-T-2009	131	65.5	Supporting	79.99	Partially Degraded	
BK7-902-T-2009	126	63	Supporting	71.82	Partially Degraded	
BK8-901-T-2009	146	73	Supporting	88.77	Minimally Degraded	
PT0-911-T-2009	127	63.5	Supporting	68.14	Partially Degraded	
PT0-916-T-2009	116	58	Partially Supporting	61.69	Degraded	
PT0-917-T-2009	127	63.5	Supporting	65.81	Degraded	
PT0-925-T-2009	120	60	Partially Supporting	74.24	Partially Degraded	
PT0-940-T-2009	107	53.5	Partially Supporting	82.81	Minimally Degraded	
PT2-949-T-2009	146	73	Supporting	79.42	Partially Degraded	
PT2-950-T-2009	121	60.5	Partially Supporting	74.66	Partially Degraded	
PT3-944-T-2009	127	63.5	Supporting	66.39	Partially Degraded	
PT3-947-T-2009	152	76	Comparable to Reference	71.02	Partially Degraded	
PT3-948-T-2009	105	52.5	Partially Supporting	57.10	Degraded	
PT5-929-T-2009	104	52	Partially Supporting	70.02	Partially Degraded	
PT5-931-T-2009	113	56.5	Partially Supporting	60.52	Degraded	
PT6-943-T-2009	130	65	Supporting	70.74	Partially Degraded	
PT6-945-T-2009	117	58.5	Partially Supporting	84.14	Minimally Degraded	
PT7-932-T-2009	169	84.5	Comparable to Reference	61.08	Degraded	
PT7-934-T-2009	117	58.5	Partially Supporting	64.94	Degraded	
PT7-936-T-2009	135	67.5	Supporting	76.66	Partially Degraded	
PT7-938-T-2009	143	71.5	Supporting	70.61	Partially Degraded	
PT8-923-T-2009	135	67.5	Supporting	78.94	Partially Degraded	
PT8-927-T-2009	117	58.5	Partially Supporting	55.44	Degraded	
PT8-937-T-2009	150	75	Supporting	75.76	Partially Degraded	
PT9-933-T-2009	137	68.5	Supporting	80.90	Partially Degraded	
PT9-935-T-2009	152	76	Comparable to Reference	87.04	Minimally Degraded	
PTB-909-T-2009	105	52.5	Partially Supporting	79.24	Partially Degraded	
PTB-910-T-2009	121	60.5	Partially Supporting	77.27	Partially Degraded	
PTB-918-T-2009	133	66.5	Supporting	90.61	Minimally Degraded	
PTC-941-T-2009	126	63	Supporting	68.14	Partially Degraded	
PTC-942-T-2009	116	58	Partially Supporting	61.39	Degraded	
PTD-922-T-2009	131	65.5	Supporting	79.31	Partially Degraded	
PTD-924-T-2009	129	64.5	Supporting	76.35	Partially Degraded	
PTD-928-T-2009	117	58.5	Partially Supporting	58.31	Degraded	
PTF-915-T-2009	139	69.5	Supporting	57.72	Degraded	
PTG-903-T-2009	126	63	Supporting	75.15	Partially Degraded	
PTG-905-T-2009	143	71.5	Supporting	76.35	Partially Degraded	
PTG-908-T-2009	137	68.5	Supporting	64.34	Degraded	
PTG-939-T-2009	118	59	Partially Supporting	70.01	Partially Degraded	
PTH-926-T-2009	142	71	Supporting	81.88	Minimally Degraded	

Table 3-4. (Continued)					
	Total RBP	Percent of		PHI	PHI Narrative
Site	Score	Reference	RBP Classification	Score	Rating
PTH-930-T-2009	112	56	Partially Supporting	57.17	Degraded
PTM-920-T-2009	108	54	Partially Supporting	79.07	Partially Degraded
PTM-921-T-2009	118	59	Partially Supporting	76.78	Partially Degraded
PTN-919-T-2009	117	58.5	Partially Supporting	85.25	Minimally Degraded
Duplicate Sites for (QC				
BK3-D07-T-2009	139	69.5	Supporting	85.16	Minimally Degraded
PT0-D17-T-2009	122	61	Partially Supporting	66.52	Partially Degraded
PT3-D47-T-2009	134	67	Supporting	68.79	Partially Degraded
PTF-D15-T-2009	118	59	Partially Supporting	55.21	Degraded
PTG-D39-T-2009	104	52	Partially Supporting	68.20	Partially Degraded

In contrast, lower scores were generally more common for in-channel conditions, particularly for parameters characterizing substrate quality and the diversity of available pool habitat. For example, only a few sites were rated as Optimal for Epifaunal Substrate / Available Cover (5 sites), Pool Substrate Characterization (3), Pool Variability (1), and Sediment Deposition (5). Pool Substrate Characterization was predominated by Marginal scores, while other parameters exhibited more normal distributions of values.

PHI scores at the targeted sites ranged from a low score of 55.4 (Degraded) to a high score of 90.6 (Minimally Degraded) out of a maximum possible score of 100 (Figure 3-6, Table 3-4). Nine of the targeted sites (18%) had PHI scores greater than or equal to 81, and a narrative rating of Minimally Degraded, the best possible rating. Twelve of the targeted sites (24%) had narrative ratings of Degraded. The majority of the targeted sites (29 sites, 58%) fell in the Partially Degraded category. No sites were rated Severely Degraded, the worst possible rating.

3.2.4 Quality Assurance and Quality Control

QA/QC measures were calculated and compared to quantitative measurement quality objectives (MQOs) when available. No QA/QC problems were identified. For detailed results, see Appendix B.

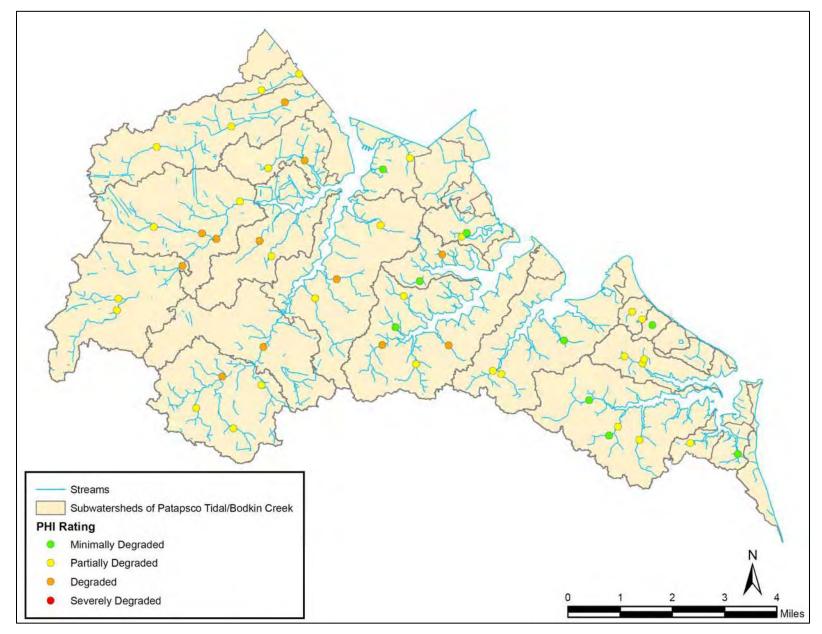


Figure 3-6. PHI habitat assessment results for 50 targeted sites sampled in Patapsco Tidal and Bodkin Creek watersheds, Anne Arundel County, 2009

4. **DISCUSSION**

The 2009 biological monitoring and assessment of streams in Patapsco Tidal and Bodkin Creek watersheds provided extensive information on the biological and physical conditions present as well as land uses. In this section, we examine the findings of this stream assessment, to interpret those results and contribute to a better understanding of the current status of Anne Arundel County streams.

4.1 LAND USE

Residential, commercial, and various industrial and transportation uses are wellrepresented in the Patapsco Tidal and Bodkin Creek watersheds. In much of the area, there is a predominance of older residential development, much of which pre-dates requirements for stormwater management. Many of the headwater streams in Patapsco Tidal watershed are surrounded by dense residential, industrial, and commercial development. Within the Patapsco Tidal watershed are Marley Station Mall, several other shopping plazas, the Brandon Shores power plant, a CSX railyard, and portions of BWI airport. Bodkin Creek watershed has generally more wooded cover and less dense residential development, and its area includes the Compass Pointe Golf Course. Some large forested areas are present, for example a large area between Marley and Stoney Creeks within the Patapsco Tidal watershed, as well as some moderate forested riparian buffer, as noted at many of the sampled sites.

As expected, given the density of urban/suburban development in the area, impervious surface in site catchments was extensive, ranging from 2 to 67% of catchment area. The majority of sites (26) had more than 25% impervious surface, a threshold at which severe stream degradation is often observed. Another 17 sites had between 10 and 25% impervious surface, a level commonly associated with moderate stream degradation. Only seven sites had catchments with less than 10% impervious surface. The percentage of wooded land, by catchment, ranged from 2% to 87%.

4.2 WATER CHEMISTRY

At the majority of sites, water chemistry data did not exceed COMAR state water quality standards. However, low pH values (less than 6.5) were observed at nine sites and high pH (greater than 8.5) at one site. In addition, elevated pH values (greater than 8.0, but below maximum water quality standards) were observed at another 11 sites. Interestingly, there were also a few sites with high conductivity (six sites with conductivity greater than 0.500 mS/cm), which may be indicative of pollutant inputs. These single-point-in-time measures only provide limited information on the parameters measured and provide no data to evaluate nutrient loads or inputs of oil and grease, hydrocarbons, or other pollutants often found in urban waterways. However, they do serve as indicators of potential problems that could merit further investigation.

4.3 **BIOLOGICAL CONDITION**

Overall, BIBI results indicated that benthic macroinvertebrate communities have been degraded to a great degree in many areas across the Patapsco Tidal and Bodkin Creek watersheds. The overwhelming majority of sites sampled were rated either Poor or Very Poor. Of the 50 sites, only 12 were rated Fair and one site Good, the two categories representing sites comparable to reference conditions. These results are constant with prior assessment work performed by the county in both the Patapsco Tidal (Victoria, unpublished data; Stribling et al. 2008) and Bodkin Creek (Stribling et al. 2008) watersheds.

This is not unexpected, given the extent and long history of urban and suburban land uses in Patapsco Tidal and Bodkin Creek watersheds. Many of the sites rated as Fair and Good were in catchments of residential land with some wooded area. However, a predominance of wooded land did not guarantee high benthic scores: eight sites with more than 50% woods in their catchments (one MBSS criterion for a "Sentinel Site" (DNR 2005)) still fell within the Poor to Very Poor biological condition categories.

4.4 HABITAT ASSESSMENT

Habitat conditions, assessed using EPA RBP and MBSS PHI methods, were generally indicative of moderate to more pronounced degradation. According to RBP scores, half of the habitat sites (25) were rated Supporting (the second highest category) and most others (22) Partially Supporting (third category of four). PHI results were similar: 29 sites were rated as Partially Degraded (the second highest category) and 12 were Degraded (third category of four). These results are consistent with previous habitat assessments performed by the county in both the Patapsco Tidal (Victoria, unpublished data; Stribling et al. 2008) and Bodkin Creek (Stribling et al. 2008) watersheds.

Few sites received top ratings. The best conditions rated as Minimally Degraded by PHI (9 sites) were generally found in smaller streams and were more common in Bodkin Creek (Figures 3-4 and 4-1). While fewer sites were sampled in Bodkin Creek, the overall distribution of PHI scores in Bodkin Creek fell in the higher categories of Partially Degraded and Minimally Degraded, with no sites rating Degraded (Figure 4-1). Two of the three sites rated as Comparable to Reference by RBP score were found along mainstem creeks.

Scores for RBP and PHI were not necessarily consistent with one another, because the two indicators incorporate different parameters associated with stream habitat (Figure 4-2). At 27 of the 50 sites (54%), sites received a comparable rating between the PHI and RBP habitat assessments (for example, when a site rated in the highest category of Minimally Degraded by the PHI were also rated Comparable to Reference by the RBP). However, almost half of the time (46% of sites) the ratings between the two assessment procedures differed in their relative assessment by category. For instance, site PT7-932-T-2009 received the best RBP

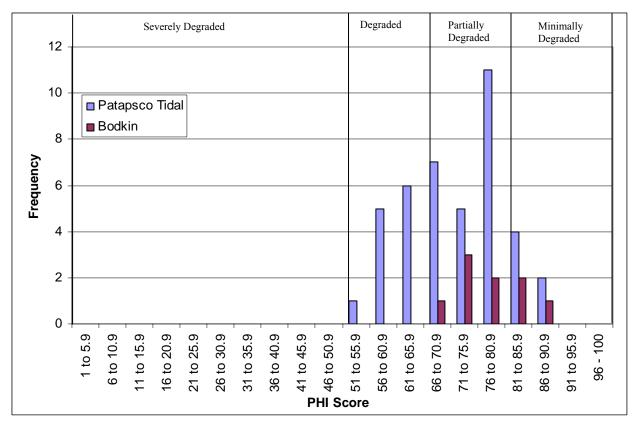


Figure 4-1. Distribution of PHI scores for 50 targeted sites sampled in Patapsco Tidal (41 sites) and Bodkin Creek (9 sites) watersheds, Anne Arundel County, MD, 2009

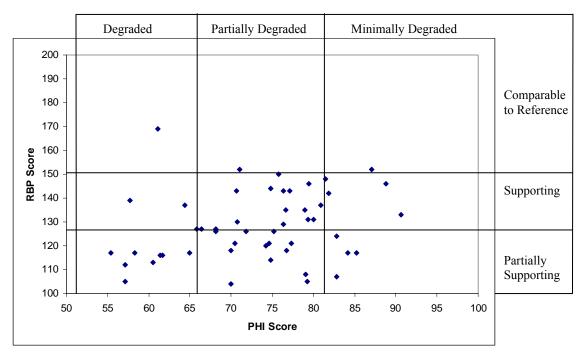


Figure 4-2. Comparison of PHI and RBP Habitat Assessment scores for 50 targeted sites sampled in Patapsco Tidal and Bodkin Creek watersheds, Anne Arundel County, Maryland, 2009.

narrative rating (Comparable to Reference) but was rated in the third of four categories (Degraded) by the PHI. The differences between ratings did not appear to follow any particular pattern, i.e., the PHI narrative rating was not always lower than the RBP narrative rating as the above example indicated. At four sites, the PHI narrative rating was the best possible rating of Minimally Degraded, while the RBP narrative rating was only Partially Supporting.

There was evidence that some streams are experiencing the typical effects of urban runoff and altered hydrology, which are characteristic of watersheds with older development and inadequate stormwater management. The bank erosion, sediment deposition, and low quality epifaunal substrate observed at some sites are signs of habitat degradation. Notably, nearly onethird of the streams surveyed (16) had at least one bank in marginal or poor condition, suggesting that altered flow regime (flashiness) is a potential problem. In urbanized watersheds, natural streamflow patterns can be disrupted, resulting in frequent high flow events that scour streambanks and can alter channel morphology (Leopold 1968, CWP 2005).

However, no sites were rated in the most severely degraded category for either habitat index. The fact that no sites rated as this poor suggests that the streams in Patapsco Tidal and Bodkin Creek watersheds have not reached the point of severe degradation commonly observed in more densely urbanized areas of the Baltimore/Washington Metropolitan region. The riparian forest buffer present at many sites may be affording a degree of protection for stream habitat. It is also possible that the low gradient, characteristic of these Coastal Plain streams, has prevented more severe erosion, which often occurs in watersheds with similar land uses in the Piedmont.

Both watersheds have a large proportion of older development, with about 65-70% of existing development already built by the end of the 1970s (Stribling et al. 2008). However, greater degradation (as evidenced by 12 sites with PHI scores in the Degraded range) was noted in Patapsco Tidal watershed, where commercial/industrial land uses are more prevalent, compared with Bodkin Creek watershed, where development is primarily residential and lower in impervious cover. Impervious surface cover at the nine Bodkin Creek sites ranged from 5.6 to 28.2%, with all but one site less than 20% impervious. In contrast, impervious surface at most of the Patapsco Tidal sites exceeded 20%, with a high of 67.2%.

4.5 INTEGRATED ASSESSMENT

A summary map depicting BIBI, PHI, and highlights of water chemistry results is shown in Figure 4-3.

Neither the RBP Habitat Assessment score nor the PHI exhibited a strong relationship to BIBI scores (Figures 4-4 and 4-5, Tables 4-1 and 4-2). The lack of correlation between BIBI scores and the habitat indicators (either RBP or PHI) suggest that other factors such as water quality or flow regime may be having a greater effect on benthic macroinvertebrates. Tables 4-1 and 4-2 show a pattern suggesting water quality impairment depressing biological integrity, regardless of habitat method used. In particular, some sites (shown in bold in Tables 4-1 and

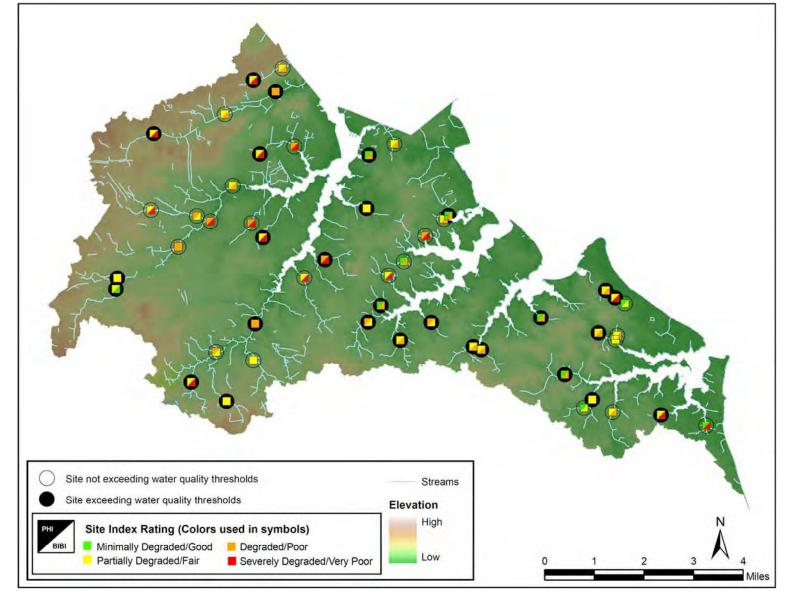


Figure 4-3. Benthic macroinvertebrate (BIBI ratings) and habitat assessment results (PHI ratings) for 50 targeted sites sampled in Patapsco Tidal and Bodkin Creek watersheds, Anne Arundel County, 2009. Sites with pH < 6.5 or > 8.0 or conductivity > 0.500 mS/cm are highlighted as exceeding water quality thresholds.

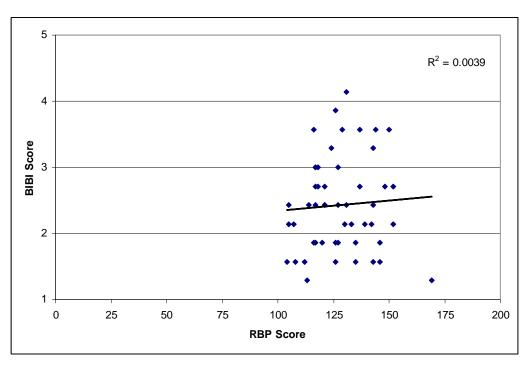


Figure 4-4. Relationship of RBP habitat assessment score to BIBI score for 50 targeted sites sampled in Patapsco Tidal and Bodkin Creek watersheds, Anne Arundel County, Maryland, 2009. Regression coefficient is also presented.

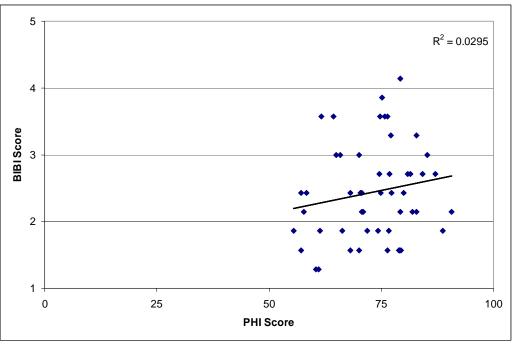


Figure 4-5. Relationship of PHI habitat assessment score to BIBI score for 50 targeted sites sampled in Patapsco Tidal and Bodkin Creek watersheds, Anne Arundel County, Maryland, 2009. Regression coefficient is also presented

Table 4-1. Comparison of sample site BIBI ratings to RBP Habitat ratings at 50 targeted stream sites sampled in Patapsco Tidal and Bodkin Creek watersheds, Anne Arundel County, Maryland, 2009. Cells shaded in green contain 3-digit abbreviations for stream sites where the biological community was less impaired than habitat scores would predict (i.e., the 3-digit "922" is an abbreviation for site PTD-922-T-2009). Yellow cells contain stream sites where the biological community matched available habitat condition. Cells shaded pink contain sites where the biological community was more impaired than the habitat scores would predict. Sites in bold type had biological conditions that differed by at least two categories from the corresponding habitat condition class.

RBP Habitat	BIBI Narrative Rating				
Rating	Good	Fair Poor		Very Poor	
Comparable			935, 947	932	
Supporting	922	903, 904, 908,	907, 946, 911, 943,	901, 902, 905,	
		912, 917, 924, 937	938, 933, 918, 915,	923, 936, 941,	
			926	944, 949	
Partially		906, 916, 919,	909, 910, 913, 914,	920, 925, 927,	
Supporting		934, 939	921, 928, 940, 945,	929, 930, 931,	
			948,950	942	
Non-Supporting					

Table 4-2. Comparison of sample site BIBI ratings to PHI Habitat ratings at 50 targeted stream sites sampled in Patapsco Tidal and Bodkin Creek watersheds, Anne Arundel County, Maryland, 2009. Cells shaded in green contain 3-digit abbreviations for stream sites where the biological community was less impaired than habitat scores would predict (i.e., the 3-digit "922" is an abbreviation for site PTD-922-T-2009). Yellow cells contain stream sites where the biological community matched available habitat condition. Cells shaded pink contain sites where the biological community was more impaired than the habitat scores would predict. Sites in bold type had biological conditions that differed by at least two categories from the corresponding habitat condition class.

PHI Habitat		BIBI Narra	ative Rating	
Rating	Good	Fair	Poor	Very Poor
Minimally		906, 919	907, 918, 926, 935,	901
Degraded			940, 945	
Partially	922	903, 904, 912,	909, 910, 911, 913,	902, 905, 920,
Degraded		924, 937, 939	914, 921, 933, 938,	923, 925, 929,
			943, 946, 947, 950	936, 941, 944,
				949
Degraded		908, 916, 917, 934	915, 928, 948	927, 930, 931,
				932, 942,
Severely				
Degraded				

4-2) showed a departure of two or more biological condition classes from that expected for the available habitat as measured in both assessment methods. These sites would be good candidates for further investigation of water quality problems or upstream conditions that may be affecting stream quality. Water quality results showed that 27 sites were in fact characterized by low (or high) pH or high conductivity (Tables 4-3 and 4-4), in many cases associated with low BIBI scores. Other sites with low biological integrity, not linked to low-scoring habitat, may also be affected by water quality, but by factors not measured in this assessment. Further investigations may be warranted to identify the sources of these biological impairments.

Anne Arundel County plans to conduct further habitat and geomorphic assessments in streams throughout the Patapsco Tidal and Bodkin Creek watersheds as part of its ongoing watershed assessment program, to provide information for developing stormwater retrofit and stream restoration measures. Field reconnaissance of upstream conditions will likely provide more evidence for factors influencing stream integrity. Supplementing these studies with further water quality investigations may provide a clearer picture of the stressors affecting streams in these two watersheds. As the County looks to improve upon existing stormwater management in these watersheds, solutions that provide for treatment of water quality as well as quantity should be considered.

spond catego green habita a biolo availa biolog scores cal co	with the pries, as d had a bio at scores v ogical con ble habita gical com s would p nditions t	compariso lepicted in logical co vould prec mmunity v at conditio munity mo redict. Sit hat differe	es by site. Colo on between RB Table 4-1. Sit mmunity less in dict. Sites shaded with condition r on. Sites shaded ore impaired that tes in bold type ed by at least two abitat condition	P and BIBI es shaded mpaired than ed yellow had natching d pink had a an the habitat had biologi- yo categories
Site	low pH (< 6.5)	high pH (> 8.0)	High Conductivity (> 0.500 mS/cm)	pH and Conductivity Normal
BK3-906-T-2009				Х
PT7-934-T-2009				Х
PTG-939-T-2009				Х
PTN-919-T-2009				Х
PT0-916-T-2009		Х		
PTD-922-T-2009		Х		
BK2-912-T-2009				Х
BK2-914-T-2009				Х
PT2-950-T-2009				Х
PTD-928-T-2009				Х
PTG-908-T-2009				Х
PT0-917-T-2009		Х		
PT6-945-T-2009		Х		
PTD-924-T-2009		Х		
PTG-903-T-2009		Х		
BK2-913-T-2009	Х			
BK3-904-T-2009	Х			
РТ8-937-Т-2009	Х			
PTB-909-T-2009	X			
PTB-910-T-2009	Х			
PTM-921-T-2009	X			
PT0-940-T-2009			Х	
PT3-948-T-2009			X	
BK8-901-T-2009				X
PT3-947-T-2009				X
PT7-932-T-2009				X
PT7-936-T-2009				X
PT8-923-T-2009				X
BK3-946-T-2009				X

Table 4-3. (Cont	inued)			
Site	low pH (< 6.5)	high pH (> 8.0)	High Conductivity (> 0.500 mS/cm)	pH and Conductivity Normal
PT0-925-T-2009		-		Х
PT5-931-T-2009				Х
PT6-943-T-2009				Х
PT7-938-T-2009				Х
PT9-933-T-2009				Х
PTC-942-T-2009				Х
PTH-926-T-2009				Х
PTH-930-T-2009				Х
PTC-941-T-2009		X		
PTG-905-T-2009		Χ		
BK3-907-T-2009		Х		
PT8-927-T-2009		Х		
PTB-918-T-2009		Х		
PTF-915-T-2009		Х		
BK7-902-T-2009	X			
PT3-944-T-2009	Χ			
PTM-920-T-2009	Х			
PT2-949-T-2009			Х	
PT9-935-T-2009			X	
PT0-911-T-2009			Х	
PT5-929-T-2009			Х	

gories had a scores biolog able h biolog scores cal co	he compa- , as depic biological s would pr gical comr abitat com gical comr would pr nditions t	rison betw ted in Tab l commun redict. Site nunity with dition. Si nunity mo redict. Site hat differe	es by site. Colo reen PHI and B le 4-2. Sites sh ity less impaire es shaded yellow th condition ma tes shaded pink ore impaired tha es in bold type d by at least tw abitat condition	IBI cate- naded green d than habitat w had a atching avail- c had a an the habitat had biologi- ro categories
Site	low pH (< 6.5)	high pH (> 8.0)	High Conductivity (> 0.500 mS/cm)	pH and Conductivity Normal
PT7-934-T-2009				Х
PTG-908-T-2009				Х
PT0-916-T-2009		Х		
PT0-917-T-2009		Х		
PTD-922-T-2009		Х		
BK2-912-T-2009				Х
PTD-928-T-2009				Х
PTG-939-T-2009				Х
PTD-924-T-2009		Х		
PTF-915-T-2009		Х		
PTG-903-T-2009		Х		
BK3-904-T-2009	Х			
PT8-937-T-2009	Х			
PT3-948-T-2009			Х	
BK8-901-T-2009				X
PT0-925-T-2009				X
PT7-936-T-2009				X
PT8-923-T-2009				X
PTH-926-T-2009				Χ
BK2-914-T-2009				Х
BK3-906-T-2009				X
BK3-946-T-2009				Х
PT2-950-T-2009				X
PT3-947-T-2009				X
PT5-931-T-2009				X
PT6-943-T-2009				Х
PT7-932-T-2009				X
PT7-938-T-2009				X
РТ9-933-Т-2009				Х

Table 4-4. (Conti	inued)			
Site	low pH (< 6.5)	high pH (> 8.0)	High Conductivity (> 0.500 mS/cm)	pH and Conductivity Normal
PTC-942-T-2009				Х
PTH-930-T-2009				Х
PTN-919-T-2009				Х
BK3-907-T-2009		X		
PT6-945-T-2009		X		
PTB-918-T-2009		Χ		
PTC-941-T-2009		X		
PTG-905-T-2009		Χ		
РТ8-927-Т-2009		Х		
BK7-902-T-2009	Χ			
PT3-944-T-2009	X			
PTM-920-T-2009	X			
BK2-913-T-2009	Х			
PTB-909-T-2009	Х			
PTB-910-T-2009	Х			
PTM-921-T-2009	Х			
PT0-940-T-2009			X	
PT2-949-T-2009			X	
PT5-929-T-2009			X	
PT9-935-T-2009			Χ	
PT0-911-T-2009			Х	

5. REFERENCES

- Anne Arundel County. 2009. General Development Plan. April. http://www.aacounty.org /PlanZone/Resources/GDPFinalDraft_1.pdf
- Barbour, M. T., J. Gerritsen, and B. Snyder. 1999. Rapid bioassessment protocols for use in wadeable streams and rivers: periphyton, benthic macroinvertebrates, and fish, 2nd edition. EPA 841-B-99-002 Office of Water, Washington, D.C.
- Center for Watershed Protection (CWP). 2005. Urban Subwatershed Restoration Manual 1: An Integrated Framework to Restore Small Urban Watersheds. Center for Watershed Protection. Ellicott City, MD. February.
- Leopold, L.B. 1968. Hydrology for urban planning, a guidebook on the hydrologic effects of urban land use: U.S. Geological Survey Circular 554, p.18.
- Maryland Department of Natural Resources (DNR). 2007. Maryland Biological Stream Survey Sampling Manual: Field Protocols. CBWP-MANTA-EA-07-01. Published by the Maryland Department of Natural Resources, Annapolis, MD. Publication number 12-2162007-190.
- Maryland Department of Natural Resources (DNR). 2005. Maryland Biological Stream Survey 2000 2004, Volume XI: Sentinel Site Network. CBWP-MANTA-EA-05-8. Published by the Maryland Department of Natural Resources, Annapolis, MD. Publication number 12-0305-0104.
- Paul, M.J., J.B. Stribling, R.J. Klauda, P.F. Kazyak, M.T. Southerland, and N.E. Roth. 2002. A Physical Habitat Index for Freshwater Wadeable Streams in Maryland. Maryland Department of Natural Resources, Monitoring and Non-Tidal Assessment Division. Annapolis, MD. CBWP-MANTA-EA-03-4.
- Southerland, M.T., G.M. Rogers, M.J. Kline, R.P. Morgan, D.M. Boward, P.F. Kazyak, R.J. Klauda, and S.A. Stranko. 2007. Improving Biological Indicators to Better Assess the Condition of Streams. Ecological Indicators 7:751-767.
- Stribling, J.B., B. Jessup, and C.J. Victoria. 2008. Aquatic Biological Assessment of the Watersheds of Anne Arundel County, Maryland: 2006. Anne Arundel County Department of Public Works, Watershed, Ecosystem, and Restoration Services, Annapolis, Maryland. 34pp., plus Appendices.
- Stribling, J.B., E.W. Leppo, and C. Daley. 1999. Biological Assessment of the Streams and Watersheds of Prince George's County, Maryland. Spring Index Period 1999. PGDER Report no 99-1. Prince George's County, Dept. of Env. Rsrs., Programs and Planning Division, Largo, MD.

- Tetra Tech, Inc. 2007. Sampling and Analysis Plan for Anne Arundel County Biological Monitoring and Assessment Program. Prepared by Tetra Tech, Inc., Owings Mills, Maryland for the Anne Arundel County Department of Public Works, Watershed and Ecosystem Services, Annapolis, Maryland. Revised December 2007.
- Tetra Tech, Inc. 2005. Documentation of Method Performance Characteristics for the Anne Arundel County Biological Monitoring Program. Prepared by Tetra Tech, Inc., Owings Mills, Maryland for the Anne Arundel County Office of Environmental & Cultural Resources, Annapolis, Maryland.
- United States Environmental Protection Agency (EPA). 1997. Volunteer Stream Monitoring A Methods Manual. EPA 841-B-97-003. U.S. Environmental Protection Agency, Office of Water 4503F, Washington, D.C. <u>http://www.epa.gov/volunteer/stream/vms59.html</u>.

APPENDIX A

INDIVIDUAL SITE DATA SUMMARIES

THIS PAGE INTENTIONALLY LEFT BLANK

Site ID BK2-912-T-2009

Sampling Date 4/20/2009 ADC Map # 10, C-7 Watershed = Bodkin Creek Subwatershed = Back Greek Location = Near Oak Road

Upstream from Mid-Point

Downstream from Mid-Point

This site is located in the Bodkin Creek watershed in Back Creek. The site is located in the back corner of the last property on the right hand side of Oak Road. Forty-eight percent of the catchment draining to this site is residential, 38% is wooded, and 13.6% is impervious. There is a shaded canopy and the riparian vegetative zone width and the vegetative protection rated as Optimal on both sides of the stream. The substrate at this site is 90% sand with 10% silt. This site rated Partially Degraded for PHI and Supporting for RBP. Its biological condition rated Fair, as no Ephemeroptera nor any scraper taxa were found, thus limiting its BIBI score (BIBI score of 3.29).

Results		cal Condition	on : Fair RBP	: SI	pporting	g MPI	HI: Partial	ly Deg	raded		
Stream Sub	system =	Perennial	4	1	Stream	m Origin = Mixture of Q	igins	5	Stream Ty	ype = Warmy	vater
Proportion (of the Strea	am that is :	Riffl Run Poo	s	30 20 50	Some Poter	ntial Source			tershed NPS F al Watershed	
Proportion o	f the Strea	m with Aqu	atic Vege	tation	0	B			served served as	ert Present ?	No
Percent of	Inorganic	Substrate	Compon	ents						ks Present ?	No
	0 Cobb 0 Grave		Sand Silt Clay	90 10 0		Evidence		The second second		ks Present ? or Dredging ?	
Water Chen	nistry	Tem	perature ((C)	11.3	Conductivity (mS/cm)	0.155	pН	7.05	DO (ppm)	8.4

Site ID BK2-912-T-2009

Biological Benthic Condition

Metrics	Value	Scores	
Total Taxa	37	5	
EPT Taxa	7	5	
% Intolerant to Urban	41.60	5	
# Ephemeroptera	0	1	
% Ephemeroptera	0.00	1	
# Scraper	D.	1	
% Climbers	16.00	5	
BIBI Score: 3.29 F	lating: Fa	air	

Taxa List

Taxa	Count	
Anchylarsus	3	
Caecidotea	13	
Ceratopogon	4	
Chaetocladius	1	
Corynoneura	3	
Dicranota	1	
Diplectrona	5	
Diplocladius	6	
Dolophilodes	1	
Enchytraeidae	1	
Gammarus	16	
Girardia	2	
Gymnometriocnemus	1	
Heteroplectron	1	
Hydatophylax	1	
Leuctra	4	
Mallochohelea	1	
Meropelopia	2	
Micropsectra	17	
Nais	6	
Nigronia	2	
Paramerina	1	
Parametriocnemus	4	
Paraphaenocladius	1	
Paratendipes	1	
Pisidium	· · ·	
Polycentropus	2	
Pseudorthocladius	1	
Pycnopsyche	3	
Synurella	2	
Tanytarsus	3	
Thienemanniella	1	
Thienemannimyia group	3	
Tipula	Ť	
Torrenticola	- 1	
Tvetenia	5	
Zavrelimyia	4	
Total Count	125	

Physical Habitat

Maryland Biological Stream	m Survey PHI	
Drainage Area (acres)	381,50	
Remoteness	87.05	
Percent Shading	99.94	
Epifaunal Substrate	46.53	
Instream Habitat	58.70	
Instream Woody Debris	100.00	
Bank Stability	70.71	
PHI Score	77.15	
PHI Narrative Rating:	Partially Degrad	led
EPA Rapid Bioassessment	£.	
Epifaunal Substrate / Availab	ole Cover	14
Pool Substrate Characteriza	tion	12
Pool Variability		10
Sediment Deposition		7
Channel Flow Status		19
Channel Alteration		19
Channel Sinuosity		18
Bank Stability - Left Bank		4
Right Bank		4
Vegetative Protection - Left I	Bank	9
Right	Bank	9
Riparian Vegetative Zone W	idth - Left Bank	9
	Right Bank	9
	RBP Score	143
RBP N	arrative Rating:	Supporting
Land Use Analysis		

Impervious Area (acres)	51.81	% Impe	ervious 13.58	
Land Use		Acres	% Area	7
Residential		184.13	48.26	
Commercial		8.28	2.17	
Transportation		9.98	2.62	
Woods		144.10	37.77	
Open Space		33.52	8.79	
Water		1.49	0.39	

Appendix A

Site ID BK2-913-T-2009

Sampling Date 4/20/2009 ADC Map # 10, B-9 Watershed = Bodkin Creek Subwatershed = Back Creek Location = Poplar Ridge Park, behind baseball fields

Upstream from Mid-Point

Downstream from Mid-Point

This site is located in the Bodkin Creek watershed in Back Creek. The site is in Poplar Ridge Park, after the last baseball field. In this catchment, the majority of the landuse is residential (54%), but just less than 34% is wooded. There is 15% impervious surface in the surrounding catchment. Poor bank stability was noted along both banks, and high levels of erosion were present in the surrounding watershed, resulting in slightly turbid water clarity in the stream. The field crew observed an ATV course alongside the stream, which may be adding to erosion and bank stability problems. In situ pH measured at this site was 6.30, slightly below the state water quality standard of 6.5. This site rated in the second best category (Partially Degraded) for PHI but in the lower category of Partially Supporting for RBP. The substrate was entirely silt and sand, and epifaunal substrate was marginal, while embeddedness was high. The benthic community at this location included no Ephemeroptera nor any scraper taxa, and only 3 EPT taxa. Benthic conditions rated Poor with a BIBI score of 2.43.

Results	Biological Co Habitat Ratin		Poor RBP: F	Partially	Supporting	MPH	I: Partial	ly Degr	aded		
Stream Sub	osystem = Pere	nnial		Strea	am Origin =	Mixture of Ori	gins	S	tream Ty	ype = Warm	water
Proportion of	of the Stream tha	at is :	Riffles Runs Pools	20 30 50		Some Poten	tial Source	100120	0.000-01-004	lershed NPS al Watershed	(diamain)
Proportion o	f the Stream with	n Aquatic	Vegetatio	on 0				Ro	ad Culve	ert Present ?	No
Bedrock	Inorganic Subs 0 Cobble 0 Gravel	trate Con 0 San 0 Silt Cla	d 95	5		Evidence o	Ri	ght Buf	fer Brea	ks Present? ks Present? or Dredging?	No
Water Cher	nistrý	Tempera		11.8	Conduc	tivity (mS/cm)	0.191	рH	6.3	DO (ppm)	8.4

Site ID BK2-913-T-2009

Biological Benthic Condition

Metrics	Value	Scores
Total Taxa	23	5
EPT Taxa	3	3
% Intolerant to Urban	20.56	з
# Ephemeroptera	0	- 1
% Ephemeroptera	0.00	1
# Scraper	0	1
% Climbers	5.61	3
BIBI Score: 2.43 R	ating: Po	oor

Taxa List

Taxa	Count
Bezzia	2
Caecidotea	5
Calopteryx	1
Corynoneura	13
Culicoides	1
Dicranota	1
Diplectrona	1
Diplocladius	12
Gammarus	30
Heteroplectron	1
Leuctra	1
Micropsectra	3
Nais	3
Orthocladinae	1
Parametriocnemus	5
Pisidium	З
Polypedilum	2
Prodiamesa	1
Rheocricolopus	2
Sphaeriidae	4
Synurella	10
Thienemannimyia group	2
Tvetenia	3
Total Count	107

Physical Habitat

Maryland Biological Stream	n Survey PHI	
Drainage Area (acres)	274.66	
Remoteness	51.66	
Percent Shading	99.94	
Epifaunal Substrate	48.68	
Instream Habitat	78.70	
Instream Woody Debris	93.64	
Bank Stability	50.00	
PHI Score	70.43	
PHI Narrative Rating:	Partially Degraded	

EPA Rapid Bioassessment

Epitounal Substrate / Available Cover	10
Epifaunal Substrate / Available Cover	10
Pool Substrate Characterization	7
Pool Variability	9
Sediment Deposition	6
Channel Flow Status	19
Channel Alteration	19
Channel Sinuosity	19
Bank Stability - Left Bank	2
Right Bank	2
Vegetative Protection - Left Bank	6
Right Bank	6
Riparian Vegetative Zone Width - Left Bank	8
Right Bank	8
RBP Score	121
RBP Narrative Rating:	Partially Supporting
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Land Use Analysis

Impervious Area (acres)	41,22 % Imp	ervious 15.01
Land Use	Acres	% Area
Residential	149.02	54.26
Commercial	4.25	1.55
Transportation	8.10	2.95
Woods	92.19	33.57
Open Space	19.61	7.14
Water	1.49	0.54

Site ID BK2-914-T-2009

Sampling Date 4/29/2009 ADC Map # 10, C-9 Watershed = Bodkin Creek Subwatershed = Back Creek Location = Bayside Beach Road

Upstream from Mid-Point

Downstream from Mid-Point

Site BK2-914-T-2009 is located off of Bayside Beach Road, in the Back Creek subwatershed of the Bodkin Creek watershed. Only about 5.6% of the catchment surrounding this site contains impervious surface, with open space dominating the catchment, contributing 61% of catchment area. Residential landuse, along with a very small amount of transportation-related landuse are also present. Despite almost 60% of the macroinvertebrates obtained in the benthic sample being considered intolerant to urban conditions, this site had only one EPT taxa and no scraper taxa present, and only a few climbers. With a BIBI score of 2.43, it rated Poor. Epifaunal substrate and pool substrate were received low ratings, and pool variability was poor with no deep pools present. Field staff noted some trash in and near the site. Streambanks were stable along both sides of the stream and no bank erosion was present. In addition, the riparian buffer was good. Habitat at this site rated Partially Degraded under the PHI (score of 74.9), and Partially Supporting under the RBP (score of 114).

Results	Biological Condition Habitat Rating :		Partially Supporting	MPHI	: Partially	y Degra	aded		
Stream Sub	system = Perennial		Stream Origin = S	Spring-fed		Ste	ream Ty	pe = Warmv	vater
Proportion (of the Stream that is :	Riffles Runs Pools	40 45 15	No) Evidence		and the second second	ershed NPS F al Watershed	
	f the Stream with Aqu Inorganic Substrate 0 Cobble 0 0 Gravel 0	Component Sand 6 Silt 4	ts	Evidence of	Rig	eft Buff ht Buff	er Breal er Breal	ert Present ? ks Present ? ks Present ? or Dredging ?	
Water Cher	nistry Ten	perature (C)	13,1 Conductiv	ity (mS/cm)	0,222	pH	7.34	DO (ppm)	7.4

Site ID BK2-914-T-2009

Biological Benthic Condition

Metrics	Value	Scores	
Total Taxa	23	.5	
EPT Taxa	1	1	
% Intolerant to Urban	59.29	5	
# Ephemeroptera	0	1	
% Ephemeroptera	0.00	1	
# Scraper	0	1	
% Climbers	2.65	3	

BIBI Score: 2.43 Rating: Poor

Taxa List

Taxa	Count	
Aulodrilus	2	
Caecidotea	11	
Cordullidae	1	
Culicidae	1	
Culicoides	2	
Dasyhelea	4	
Diplocladius	2	
Enochrus	1	
Larsia	1	
Limnodrilus	5	
Meropelopia	3	
Naididae (Tubificinae)	5	
Natarsia	1	
Paratendipes	2	
Phryganeidae	1	
Polypedilum	2	
Sphaeriidae	7	
Spirosperma	1	
Synurella	55	
Tanytarsus	1	
Thienemannimyia group		
Turbellaria	п.	
Zavrelimyia	3	
Total	Count 113	

Physical Habitat

Maryland Biological Stream	m Survey PHI	
Drainage Area (acres)	54.85	
Remoteness	31.22	
Percent Shading	100.00	
Epifaunal Substrate	53.36	
Instream Habitat	67.45	
Instream Woody Debris	97.08	
Bank Stability	100.00	
PHI Score	74.85	
PHI Narrative Rating:	Partially Degrad	led
EPA Rapid Bioassessmen	t	
Epifaunal Substrate / Availal	ble Cover	4
Pool Substrate Characteriza	tion	6
Pool Variability		4
Sediment Deposition		6
Channel Flow Status		16
Channel Alteration		18
Channel Sinuosity		6
Bank Stability - Left Bank		9
Right Bank		9
Vegetative Protection - Left	Bank	9
Righ	t Bank	9
Riparian Vegetative Zone W	idth - Left Bank	9
	Right Bank	9
	RBP Score	114

Impervious Area (acres)	3.08	% Impe	ervious 5.6
Land Use		Acres	% Area
Residential		19.85	36.19
Transportation		1.46	2.66
Woods		33.54	61.15

Site ID BK3-904-T-2009

Sampling Date 4/20/2009 ADC Map # 10, A-10 Watershed = Bodkin Creek Subwatershed = Main Creek Location = Loreen Drive at Silver Run Drive

Upstream from Mid-Point

Downstream from Mid-Point

This site is located at Loreen Drive at Silver Run Drive in the Bodkin Creek watershed in the Main Creek subwatershed. The area surrounding the stream was very marshy and organic deposits and skunk cabbage were present in large quantities. Streambanks were mainly stable and vegetative protection and riparian widths were good. Fifty-nine percent of the catchment draining to this site has residential landuse, while 33% is wooded. Impervious surfaces make up 17.4% of the catchment acreage. In situ pH was 6.33 at this site, notable since it was slightly below the state water quality standard of 6.5. This site had Partially Degraded habitat conditions according to the PHI and rated Supporting under the RBP. This site tied with two other sites in having the largest number of benthic taxa collected during sampling – 42. Benthic metric scores were high for this large number of taxa as well as for a healthy number of scraper taxa. The biological condition at this site was Fair with a BIBI score of 3.57.

Results	Biological C Habitat Rat		Fair RBP :	Supportin	g MPH	: Partiall	y Degi	raded		
Stream Sub	system = Per	rennial		Strea	m Origin = Mixture of Orig	gins	S	tream Ty	/pe = Warmv	vater
	of the Stream the stream the stream w		Riffles Runs Pools Vegetati	10 10	N	o Evidenc	N	lone Loc	ershed NPS F al Watershed ert Present ?	Erosion
Bedrock	Inorganic Sub Cobble Gravel	0 Sar 0 Sar 0 Silt Cla	nd 8	0	Evidence of	Rig	ght Bul	ffer Brea	ks Present ? ks Present ? or Dredging ?	
Water Cher	nistry	Temper	ature (C)	11.2	Conductivity (mS/cm)	0.115	рН	6.33	DO (ppm)	8.1

Site ID BK3-904-T-2009

Distanting	DamAlaia	Com allalan
Biological	Renthic	Longition

Metrics	Value	Scores	
Total Taxa	42	5	
EPT Taxa	4	3	
% Intolerant to Urban	27.27	3	
# Ephemeroptera	- 1	3	
% Ephemeroptera	0.91	3	
# Scraper	3	5	
% Climbers	6.36	3	
BIBI Score: 3.57 R	ating: Fa	air	

Taxa List

Taxa	Count
Ablabesmyia	- 1
Anchytarsus	1
Apsectrotanypus	4
Bezzia	6
Caecidotea	7
Calopteryx	1
Ceratopogon	2
Ceratopogonidae	1
Clinotanypus	2
Cordulegaster	1
Cryptochironomus	2
Culicoides	2
Enchytraeidae	2
Enochrus	Ŧ
Eurylophella	1
Forcipomyia	1
Heterotrissocladius	4
Lepidostoma	· A.
Limnodrilus	2
Meropelopia	2
Micropsectra	1
Molanna	1
Naididae (Tubificinae)	19
Nais	2
Parametriocnemus	1
Paraphaenocladius	1
Pericoma/Telmatoscopus	÷ 1
Phaenopsectra	1
Polycentropus	1
Polypedilum	2
Pseudolimnophila	3
Pseudorthoctadius	- 1
Stalis	1
Sphaeriidae	2
Stenelmis	2
Stictochironomus	2
Synurella	9
Tanytarsus	2
Thienemannimyia group	11.
Trissopelopia	1
Turbellaria	1
Zavrelimyia	1
Total Count	110

Physical Habitat

Maryland Biological Stream	m Survey PHI		
Drainage Area (acres)	584.73		
Remoteness	59.13		
Percent Shading	91.34		
Epifaunal Substrate	43.75		
Instream Habitat	70.97		
Instream Woody Debris	93,96		
Bank Stability	89.45		
PHI Score	74.77		
PHI Narrative Rating:	Partially Degrad	ed	
EPA Rapid Bioassessmen	t		
Epifaunal Substrate / Availat	ole Cover	15	
Pool Substrate Characteriza	tion	8	
Pool Variability		8	
Sediment Deposition		9	
Channel Flow Status		18	
Channel Alteration		19	
Channel Sinuosity		16	
Bank Stability - Left Bank		9	
Right Bank		9	
Vegetative Protection - Left	Bank	7	
Right	t Bank	9	
Riparian Vegetative Zone W	idth - Left Bank	8	
	Right Bank	9	
	RBP Score	144	
RBP N	arrative Rating:	Supporting	
Land Use Analysis			

Impervious Area (acres) 102.00	% Impe	ervious 17.44	
Land Use	Acres	% Area	
Residential	345.74	59.13	
Commercial	8.92	1.53	
Transportation	16.79	2.87	
Airport	5.23	0.90	
Pasture/Hay	5.45	0.93	
Woods	190.18	32.52	
Open Space	12.42	2.12	

Site ID BK3-906-T-2009

Sampling Date 4/29/2009 ADC Map # 10, A-10 Watershed = Bodkin Creek Subwatershed = Main Creek Location = Loreen Drive, between Joanne Court and Overview Drive

Upstream from Mid-Point

Downstream from Mid-Point

This site is located in the Bodkin Creek watershed in Main Creek. The site is off of Loreen Drive and can be accessed through an empty lot between Joanne Court and Overview Drive. The majority of the landuse near this stream is residential (53%), with almost 40% wooded. This site had Minimally Degraded habitat conditions according to the PHI and Partially Supporting habitat conditions according to the RBP assessment (total score of 124). Epifaunal substrate and available cover rated at the low end of suboptimal here, with substrate comprised entirely of sand and silt. The canopy was partially shaded, and some bank erosion was noted by the field crew. Seventy percent of benthic macroinvertebrates collected at this site were considered intolerant to urban conditions and the biological community rated Fair with a BIBI score of 3.29.

Results	Biological Conditi Habitat Rating :		Partially Supp	orting MF	PHI : Minima	ally Degraded		
	ype = Warmv	vater						
Proportion	of the Stream that is	Runs	20		No Evidend			
Proportion of	f the Stream with Aq	uatic Vegetat	on 0			Road Culv	ert Present ?	No
Percent of	Inorganic Substrate	e Componen	ts		L.	eft Buffer Brea	ks Present ?	No
Bedrock	0 Cobble 0	Sand 8 Silt 2	0	Evidence		3	and the second of	
Water Cher	nistry Ter	nperature (C)	14.9 C	onductivity (mS/cm) 0.162	рН 6.56	DO (ppm)	7,9

Site ID BK3-906-T-2009

Biological Benthic Condition

Metrics	Value	Scores	
Total Taxa	26	5	
EPT Taxa	5	5	
% Intolerant to Urban	70.49	5	
# Ephemeroptera	0	1	
% Ephemeroptera	0.00	1	
# Scraper	1	3	
% Climbers	4.92	3	

BIBI Score: 3.29 Rating: Fair

Taxa List

Taxa	Coun
Ablabesmyla	1
Bittacomorpha	-1
Caecidotea	38
Ceratopogon	2
Chaetocladius	1
Clinotanypus	1
Corynoneura	1
Culicoides	3
Dicranota	2
Diplectrona	1
Heteroplectron	1
Lepidostoma	5
Leuctra	2
Lype	1
Meropelopia	4
Naididae (Tubificinae)	1
Nais	5
Parametriocnemus	6
Phaenopsectra	1
Polypedilum	
Pseudolimnophila	2
Rheocricotopus	4
Simulium	2
Sphaeriidae	1
Synurella	33
Thienemannimyla group	2
Total Count	122

Physical Habitat

Maryland Biological Stream	m Survey PHI	
Drainage Area (acres)	253.58	
Remoteness	65.72	
Percent Shading	99.94	
Epifaunal Substrate	84.05	
Instream Habitat	85.07	
Instream Woody Debris	70.88	
Bank Stability	91.29	
PHI Score	82.82	
PHI Narrative Rating:	Minimally Degraded	

EPA Rapid Bioassessment

at remaphe broad becoment	
Epifaunal Substrate / Available Cover	11
Pool Substrate Characterization	6
Pool Variability	6
Sediment Deposition	7
Channel Flow Status	15
Channel Alteration	18
Channel Sinuosity	11
Bank Stability - Left Bank	7
Right Bank	7
Vegetative Protection - Left Bank	9
Right Bank	9
Riparian Vegetative Zone Width - Left Bank	9
Right Bank	9
RBP Score	124
RBP Narrative Rating:	Partially Supporting

% Impe	ervious 13.02
Acres	% Area
134.44	53.02
0.97	0.38
6.26	2.47
5.23	2.06
5.45	2.15
101.18	39.90
0.04	0.02
	Acres 134.44 0.97 6.26 5.23 5.45 101.18

Site ID BK3-907-T-2009

Sampling Date 4/22/2009 ADC Map # 9, K-7 Watershed = Bodkin Creek Subwatershed = Main Creek Location = Old Nike Missile Site Road, at golf course

Upstream from Mid-Point

Downstream from Mid-Point

This site is located in the Bodkin Creek watershed in the Main Creek subwatershed. It is off of Old Nike Missile Road near a golf course. Nearby landuse is 40% wooded and 35% residential, with 12% of surfaces considered impervious. The substrate at this site was mainly made up of sand and gravel with some silt. It had a shaded canopy, optimal epifaunal substrate and available cover, and low levels of embeddedness. Despite a Minimally Degraded rating for habitat conditions under the PHI and a Supporting rating under the RBP, this site had a Poor biological community, with a BIBI score of 2.71. The benthic community included no Ephemeroptera nor any scraper taxa, and only two EPT taxa. Bank stability at this site received only a marginal rating.

Results	Biological Condition : Habitat Rating :	Poor RBP : Suppo	orting N	MPHI: Minimally Degraded
Stream Sub	osystem = Perennial	St	tream Origin = Spring-fed	d Stream Type = Warmwater
Proportion (of the Stream that is :	Riffles 50 Runs 25 Pools 25]	No Evidence of Local Watershed NPS Pollution Moderate Local Watershed Erosion
Proportion o	f the Stream with Aquatic	Vegetation	0	Road Culvert Present ? No
Percent of	Inorganic Substrate Co	mponents		Left Buffer Breaks Present ? No
Bedrock	0 Cobble 0 Sar 0 Gravel 35 Sill Cla	nd 50 15	Evidenc	Right Buffer Breaks Present? No ice of Channel Straightening or Dredging? No
Water Cher	nistry Temper	ature (C) 11	Conductivity (mS/ci	em) 0.236 pH 8.13 DO (ppm) 10.2

Site ID BK3-907-T-2009

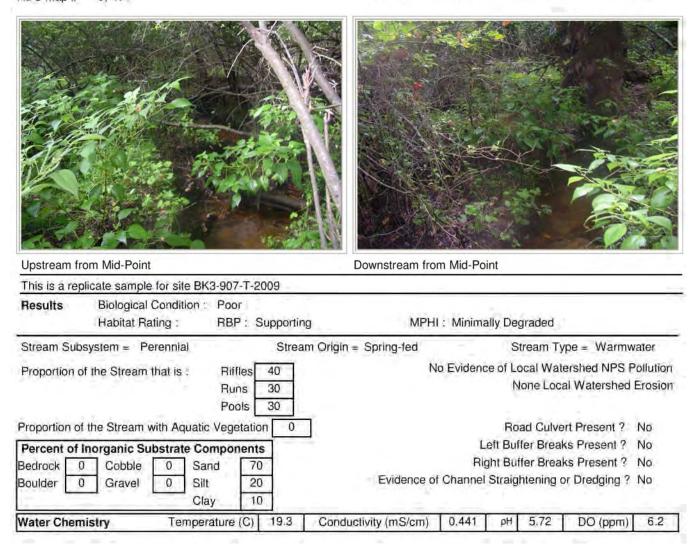
Biological Benthic Condition

Metrics	Value	Scores
Total Taxa	32	5
EPT Taxa	2	з
% Intolerant to Urban	30.43	5
# Ephemeroptera	0	1.
% Ephemeroptera	0.00	1
# Scraper	0	1
% Climbers	7.83	3
BIBI Score: 2.71 R	ating: Po	oor

Taxa List

Taxa	Count
Ablabesmyia	5
Apsectrotanypus	1
Caecidotea	11
Ceratopogon	4
Ceratopogonidae	1
Clinotanypus	1
Cordulegaster	3
Culicoides	2
Diplocladius	1
Enchytraeidae	2
Heterotrissocladius	2
Hexatoma	1
Hydrobius	1
Natarsia	4
Nigronia	2
Parametriocnemus	3
Paraphaenocladius	4
Paratendipes	15
Phaenopsectra	1
Pisidium	2
Polycentropus	6
Polypedilum	4
Pseudorthocladius	1
Ptilostomis	1
Rheocricotopus	5
Sialis	2
Simulium	10
Sphaeriidae	8
Synurella	6
Tanytarsus	3
Thienemannimyia group	4
Zavrelimyia	1
Total Count	115

Physical Habitat


Maryland Biological Stream	m Survey PHI	
Drainage Area (acres)	748.72	
Remoteness	87.05	
Percent Shading	100.00	
Epifaunal Substrate	94.43	
Instream Habitat	100.00	
Instream Woody Debris	52.70	
Bank Stability	54.77	
PHI Score	81.49	
PHI Narrative Rating:	Minimally Degra	ided
EPA Rapid Bioassessment	6	
Epifaunal Substrate / Availat		17
Pool Substrate Characteriza	tion	14
Pool Variability		12
Sediment Deposition		13
Channel Flow Status		18
Channel Alteration		18
Channel Sinuosity		14
Bank Stability - Left Bank		3
Right Bank		3
Vegetative Protection - Left I	Bank	9
Right	t Bank	9
Riparian Vegetative Zone W	idth - Left Bank	9
	Right Bank	9
	RBP Score	148
RBP N	arrative Rating:	Supporting

Impervious Area (acres) 91.22	% Impe	ervious 12.18
Land Use	Acres	% Area
Residential	265.26	35.43
Commercial	35.06	4.68
Transportation	6.16	0.82
Airport	3.16	0.42
Pasture/Hay	4.32	0.58
Woods	303.55	40.54
Open Space	127.51	17.03
Water	3.72	0.50

Site ID BK3-D07-T-2009

Sampling Date 4/22/2009 ADC Map # 9, K-7 Watershed = Bodkin Creek Subwatershed = Main Creek Location = Old Nike Missile Site Road, at golf course

Site ID BK3-D07-T-2009

Biological Benthic Condition

1914	6. 4. 18 A. 19-1	-	-
Metrics	Value	Scores	
Total Taxa	30	5	
EPT Taxa	1	1.1	
% Intolerant to Urban	45.13	5	
# Ephemeroptera	0	1	
% Ephemeroptera	0.00	1	
# Scraper	.1	З	
% Climbers	4.42	з	
BIBI Score: 2.71 R	ating: Po	oor	

Taxa List

Taxa	Count
Caecidotea	35
Ceratopogon	3
Chaetocladius	+
Corduliidae	
Corynoneura	1
Crambidae	1
Diplocladius	з
Girardia	
Heterotrissocladius	1
Hydrobaenus	1
Limnophyes	
Micropsectra	
Naididae (Tubificinae)	. 1
Nais	7
Natarsia	4
Paraphaenocladius	2
Paratendipes	2
Phaenopsectra	= 1
Phagocata	1
Pisidium	10
Polycentropus	1
Polypedilum	3
Pseudolimnophila	2
Rheocricotopus	8
Simulium	4
Synurella	7
Thienemannimyia group	7
Tipula	0
Tribelos	. 6
Zavrelimyia	- 1
Total Count	113

Physical Habitat

Maryland Biological Stream	m Survey PHI		
Drainage Area (acres)	748.72		
Remoteness	87.05		
Percent Shading	99.94		
Epifaunal Substrate	82.81		
Instream Habitat	100.00		
Instream Woody Debris	70.45		
Bank Stability	70.71		
PHI Score	85.16		
PHI Narrative Rating:	Minimally Degra	ided	
EPA Rapid Bioassessmen	t		-
Epifaunal Substrate / Availal	ble Cover	16	
Pool Substrate Characteriza	tion	8	
Pool Variability		9	
Sediment Deposition		7	
Channel Flow Status		17	
Channel Alteration		19	
Channel Sinuosity		15	
Bank Stability - Left Bank		6	
Right Bank		6	
Vegetative Protection - Left	Bank	9	
Righ	t Bank	9	
Riparian Vegetative Zone W	idth - Left Bank	9	
Alter a series and a series	Right Bank	9	
	RBP Score	139	
RBP N	arrative Rating:	Supporting	

Impervious Area (acres) 91.22	% Impe	ervious 12.18
Land Use	Acres	% Area
Residential	265,26	35.43
Commercial	35.06	4.68
Transportation	6.16	0.82
Airport	3.16	0.42
Pasture/Hay	4.32	0.58
Woods	303.55	40.54
Open Space	127.51	17.03
Water	3.72	0.50

Site ID BK3-946-T-2009

Sampling Date 4/29/2009 ADC Map # 10, C-1 Watershed = Bodkin Creek Subwatershed = Main Creek Location = Ipswich Court

Upstream from Mid-Point

Downstream from Mid-Point

This site is located in the Bodkin Creek watershed in Main Creek. It is off of Ipswich Court behind the middle house on the left side of the cul-de-sac. Landuse near this site is dominated by residential (49%) and wooded areas (32%). This site had a shaded canopy, but its channel flow rated at the low end of suboptimal. With a PHI score of 79.99, this site rated Partially Degraded for habitat and similarly rated Supporting under the RBP (RBP score of 131, 65.5% of Reference). Biological conditions at this site rated Poor, as the BIBI score was 2.43. Neither Ephemeroptera nor any scraper taxa were present in the biological community, thus limiting its score.

Results		cal Conditio Rating :	n : Poo RBF		ng M	PHI : Partial	lly Deg	raded		
Stream Sub	system =	Perennial	1	Stre	am Origin = Spring-fed		5	Stream T	ype = Warmv	vater
Proportion	of the Strea	am that is :	Riff Rur Poc			No Eviden	CALCER A PAR		tershed NPS I al Watershed	
Proportion o	f the Stream	m with Aqu	atic Vege	tation 0			Ro	ad Culve	ert Present ?	No
Percent of	Inorganic	Substrate	Compor	ents		4	eft Bu	ffer Brea	ks Present ?	No
Bedrock	Cobbl Grave	e 0 el 0	Sand Silt Clay	75 25 0	Evidence		-		ks Present ? or Dredging ?	
Water Cher	nistry	Tem	perature	(C) 16.1	Conductivity (mS/cm	0.289	рH	6.62	DO (ppm)	6.8

Site ID BK3-946-T-2009

Biological Benthic Condition

Metrics	Value	Scores
Total Taxa	31	5
EPT Taxa	1	1
% Intolerant to Urban	60.18	5
# Ephemeroptera	0	1
% Ephemeroptera	0.00	1
# Scraper	Ō	1
% Climbers	5.31	3
BIBI Score: 2.43 R	ating: Po	oor

Taxa List

Taxa	Count	
Ablabesmyia	3	
Apsectrotanypus	5	
Aulodrilus	1	
Bezzia	4	
Boyeria	1	
Caecidotea	60	
Ceratopogon	3	
Clinotanypus	4	
Corynoneura	1	
Crambidae	1	
Cryptochironomus	1	
Culicoides	1	
Eclipidrilus	2	
Limnophyes	3	
Micropsectra	t	
Naididae (Tubilicinae)	1	
Nigronia	4	
Odontomesa	1	
Parametriocnemus	2	
Phylocentropus	1	
Pisidium	1	
Pristina	2	
Pseudolimnophila	1	
Pseudorthocladius	1	
Simulium	2	
Stempellinella	1	
Synurella	2	
Tanytarsus	2	
Thienemannimyia group	1	
Tribelos	1	
Zavrelimyia	2	
Total Count	113	

Physical Habitat

Maryland Biological Strea	m Survey PHI		
Drainage Area (acres)	269.19		
Remoteness	42.78		
Percent Shading	91.34		
Epifaunal Substrate	89.47		
Instream Habitat	95.55		
Instream Woody Debris	76.12		
Bank Stability	84.66		
PHI Score	79.99		
PHI Narrative Rating:	Partially Degrad	led	
EPA Rapid Bioassessmer	nt		
Epifaunal Substrate / Availa	ble Cover	14	
Pool Substrate Characteriza	ation	9	
Pool Variability		7	
Sediment Deposition		7	
Channel Flow Status		11	
Channel Alteration		18	
Channel Sinuosity		13	
Bank Stability - Left Bank		8	
Right Bank		8	
Vegetative Protection - Left	Bank	9	
Righ	nt Bank	9	
Riparian Vegetative Zone V	Vidth - Left Bank	9	
	Right Bank	9	
	RBP Score	131	
RBPN	arrative Rating:	Supporting	

Impervious Area (acres)	34.09	% Impe	ervious 12.67
Land Use		Acres	% Area
Residential		131.21	48.74
Commercial		5.48	2.03
Transportation		9.51	3,53
Woods		87.11	32,36
Open Space		3.79	1.41
Wetland		14.29	5.31
Water		17.80	6.61

Site ID BK7-902-T-2009

Sampling Date 4/20/2009 ADC Map # 10, E-11 Watershed = Bodkin Creek Subwatershed = Wharf Creek Location = Ventner Drive at Bodkin Elementary School

Upstream from Mid-Point

Downstream from Mid-Point

This site is in Wharf Creek in the Bodkin Creek watershed. The site is located at Bodkin Elementary School at Ventner Drive. Landuse near this site was 41% commercial, 24% wooded, and 23% open space. Impervious surfaces made up 28.3% of the catchment. Moderate levels of trash were present at the time of sampling. Stream substrate was completely sand, and embeddedness was high. Consequently, epifaunal substrate and available cover received a marginal rating. In situ pH was measured as 6.35, slightly below the state water quality standard of 6.5. Habitat rating scores were moderate, resulting in a PHI rating of Partially Degraded and an RBP habitat rating of Supporting. However, the benthic community is Very Poor, with a BIBI score of 1.86. The benthic community consisted of only 1 EPT taxa and only 8% of the macroinvertebrates obtained in the sample are considered intolerant to urban conditions.

Results		cal Condition Rating :	: Very F RBP :		ng MPH	: Partial	ly Deg	raded		
Stream Sub	system =	Perennial		Stre	am Origin = Mixture of Orig	gins	S	tream Ty	/pe = Warmv	vater
Proportion			Riffles Runs Pools	20 10	Some Potent	ial Source	Mode	rate Loc	al Watershed	Erosion
	1 A		Compone		Evidence o	Rig	eft But ght Bu	fer Brea ffer Brea	ert Present ? ks Present ? ks Present ? or Dredging ?	and the second se
Water Cher			lay erature (C	0	Conductivity (mS/cm)	0.105	pН	6.35	DO (ppm)	9.83

Site ID BK7-902-T-2009

Biological Benthic Condition

Metrics	Value	Scores
Total Taxa	21	3
EPT Taxa	1	1
% Intolerant to Urban	8.74	1
# Ephemeroptera	0	1
% Ephemeroptera	0.00	1
# Scraper	0	1
% Climbers	15.53	5
BIBI Score: 1.86 R	ating: Ve	ery Poor

Taxa List

Taxa	Count	
Bezzia	2	
Chaetocladius	6	
Cryptechironomus	1	
Culicoides	1	
Enchytraeidae	3	
Ironoquia	2	
Limnodrilus	3	
Limnophyes	1	
Lumbricidae	1	
Naididae (Tubificinae)	2	
Neoporus	Ť	
Orthocladiinae	2	
Paraphaenocladius	27	
Phaenopsectra	17	
Polypedilum	16	
Prostoma	1	
Pseudorthocladius	4	
Rheocricotopus	2	
Stygobromus	1	
Synurella	9	
Zavrelimyia	2	
Total Count	103	

Physical Habitat

Maryland Biological Stream	- Survey DUI		
Maryland Biological Stream			
Drainage Area (acres)	84.41		
Remoteness	15.79		
Percent Shading	91.34		
Epifaunal Substrate	56.36		
Instream Habitat	90.78		
Instream Woody Debris	86.29		
Bank Stability	90.37		
PHI Score	71,82		
PHI Narrative Rating:	Partially Degrad	led	
EPA Rapid Bioassessment			
Epifaunal Substrate / Availab	le Cover	8	
Pool Substrate Characterizat	lion	6	
Pool Variability		10	
Sediment Deposition		8	
Channel Flow Status		19	
Channel Alteration		19	
Channel Sinuosity		15	
Bank Stability - Left Bank		5	
Right Bank		5	
Vegetative Protection - Left E	Bank	8	
Right	Bank	8	
Riparian Vegetative Zone W	idth - Left Bank	6	
	Right Bank	9	
	RBP Score	126	
RBP Na	arrative Rating:	Supporting	
The state state in the state	-		_

Impervious Area (acres) 23.85	% Impe	ervious 28.25
Land Use	Acres	% Area
Residential	10.04	11.90
Commercial	34.35	40.69
Transportation	0.02	0.02
Woods	20.45	24.22
Open Space	19.56	23.17
a second a second se		

Site ID BK8-901-T-2009

Sampling Date 4/20/2009 ADC Map # 10, H-1 Watershed = Bodkin Creek Subwatershed = Locust Cove Location = Downs Memorial Park

Upstream from Mid-Point

Downstream from Mid-Point

This site is located near Downs Memorial Park in Locust Cove in the Bodkin Creek watershed. The majority of the landuse near this site (73%) is wooded area, and 10.9% of the catchment is classified as impervious. The stream substrate is made up mainly of sand with some silt, and the stream canopy is shaded. This site received optimal ratings for bank stability, vegetative protection, and riparian zone width on both sides of the stream, and no bank erosion was noted by the field crew. Total RBP habitat score at this site was 146 (Supporting). Very little trash was present and no buffer breaks were observed. The PHI score was 88.7, the second highest score of all sites sampled during this survey. However, the macroinvertebrate community obtained at this site had no climber, no scraper, and no Ephemeroptera taxa, and only one EPT taxa. Thus, its benthic condition was rated as Very Poor, with a BIBI score of 1.86.

Results	Biologica Habitat I	al Condition : Rating :	Very Poo RBP : S	or Supporting	MPHI	: Minima	ally Degraded		
Stream Sub	system =	Perennial		Stream	n Origin = Mixture of Orig	lins	Stream	Type = Warmv	water
	of the Stream	n that is : with Aquatic	Riffles Runs Pools	20 40 40 n 0	N 1	o Evidenc	None Lo	atershed NPS I cal Watershed vert Present ?	l Erosion
Percent of Bedrock	e car in section of	Substrate Co	mponents nd 80 20		Evidence of	Riç	ght Buffer Bre	aks Present ? aks Present ? or Dredging ?	
Water Cher	nistry	Temper	ature (C)	11	Conductivity (mS/cm)	0.121	pH 6.88	DO (ppm)	8.7

Site ID BK8-901-T-2009

Biological Benthic Condition

Metrics	Value	Scores
Total Taxa	18	3
EPT Taxa	1	1
% Intolerant to Urban	76.92	5
# Ephemeroptera	0	1
% Ephemeroptera	0.00	Ť
# Scraper	0	1
% Climbers	0.00	1

BIBI Score: 1.86 Rating: Very Poor

Taxa List Taxa

Taxa	Count
Caecidotea	74
Chrysops	5
Culicoides	6
Cymbiodyta	1
Diplocladius	A.
Erioptera	1
Girardia	1
Hexatoma	3
Limnodrilus	2
Mallochohelea	1
Naididae (Tubificinae)	3
Paranais	1
Rheocricotopus	5
Shipsa	1
Sphaeriidae	3
Spirosperma	1
Synurella	7
Zavrelimyia	1
Total Count	117

Physical Habitat

Maryland Biological Stream	m Survey PH	A. 1
Drainage Area (acres)	96.48	
Remoteness	42.78	
Percent Shading	99.94	
Epifaunal Substrate	90.35	
Instream Habitat	100.00	
Instream Woody Debris	99.57	
Bank Stability	100.00	
PHI Score	88.77	
PHI Narrative Rating:	Minimally De	egraded
EPA Rapid Bioassessment	t	
Epifaunal Substrate / Availat	ole Cover	13
Pool Substrate Characteriza	tion	9
E CALL AND A REAL PROPERTY OF A	8	
Pool Variability		0
Pool Variability Sediment Deposition		8
		8

9

9 9

9

Right Bank 9 RBP Score 146

RBP Narrative Rating: Supporting

9

Land Use Analysis

Bank Stability - Left Bank

Vegetative Protection - Left Bank

Right Bank

Riparian Vegetative Zone Width - Left Bank

Right Bank

Impervious Area (acres) 10.53	% Impe	ervious 10.91
Land Use	Acres	% Area
Residential	7.83	8.12
Commercial	2.26	2.34
Transportation	7.60	7.88
Woods	70.62	73.20
Open Space	8.17	8.46

Appendix A

Site ID PT0-911-T-2009

Sampling Date 4/22/2009 ADC Map # 9, A-7

Watershed = Patapsco Tidal Subwatershed = Stony Creek Location = West end of 20th Street

Upstream from Mid-Point

Downstream from Mid-Point

This site is located at the west end of 20th Street in an open area in Stony Creek in the Patapsco Tidal watershed. Landuse near the site is 54% residential, 18.8% wooded, and 15.5% commercial. These landuses result in an impervious surface percentage of 37.4% of total catchment area. Field crew members noted an anaerobic odor present at the site on the day of sampling as well as high levels of trash. Stream substrate contained mostly sand with some silt and some clay present. Embeddedness was high. The canopy was partly shaded, and some emergent and some submerged aquatic vegetation were present. While bank stability, vegetative protection, and riparian vegetative zone width rated well in the RBP habitat assessment, this site received lower scores for epifaunal substrate, sediment deposition, pool substrate, and pool variability. Overall, the total RBP habitat score was 127. Supporting. The total PHI score was 68.1, Partially Degraded. Only 4.6% of the benthic taxa types found at this site were considered intolerant to urban conditions, but the presence of some EPT, some scraper, and some climber taxa resulted in a BIBI score of 2.43, Poor.

Results	Biological Habitat R	Condition		Supportin	a MPI	H: Partial	ly Degr	aded		
Stream Su	bsystem = P	erennial			m Origin = Spring-fed		1-03		ype = Warmv	vater
Proportion	of the Stream	that is :	Riffles Runs Pools	10 60 30		No Eviden			tershed NPS F al Watershed	Contraction by 1
1211212	of the Stream	COMPANY OF THE	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -]	1			ert Present? ks Present?	No No
Bedrock Boulder	0 Cobble 0 Gravel	0 S 0 S	and S	90 5 5	Evidence		9		ks Present ? or Dredging ?	No Na
Water Che	mistry	Tempe	erature (C)	11.5	Conductivity (mS/cm)	0.554	рН	7.15	DO (ppm)	10

Site ID PT0-911-T-2009

Biological Benthic Condition

00	
23	5
2	3
4.59	1
0	1
0.00	1
1	3
1.83	З
	4.59 0 0.00 1

BIBI Score: 2.43 Rating: Poor

Taxa List

Taxa	Count
Argia	1-
Aulodrilus	1
Bezzia	1
Caecidolea	2
Corynoneura	:9
Diplectrona	4
Gammarus	58
Gomphus	1
Naididae (Tubificinae)	6
Nais	x
Paratanytarsus	1
Paratendipes	4
Pisidium	2
Polycentropus	1
Polypedilum	2
Prodiamesa	3
Rheotanytarsus	1
Sphaeriidae	2
Stenelmis	4
Thienemannimyia group	1
Tipula	1
Tribelos	5
Zavrelimyia	- 1
Total Count	109

Physical Habitat

Maryland Biological Stream	n Survey PHI	
Drainage Area (acres)	269.73	
Remoteness	59.13	
Percent Shading	58.94	
Epifaunal Substrate	42.98	
Instream Habitat	51.15	
Instream Woody Debris	100.00	
Bank Stability	96.61	
PHI Score	68.14	
PHI Narrative Rating:	Partially Degrad	led
EPA Rapid Bioassessment		
Epifaunal Substrate / Availab		7
Pool Substrate Characterizal	tion	8
Pool Variability		7
Sediment Deposition		6
Channel Flow Status		15
Channel Alteration		19
Channel Sinuosity		15
Bank Stability - Left Bank		8
Right Bank		8
Vegetative Protection - Left E	Bank	9
Right	Bank	9
Riparlan Vegetative Zone W	idth - Left Bank	8
	Right Bank	8
	RBP Score	127
BBP N	arrative Rating:	Supporting

Impervious Area (acres) 100.91	% Impe	ervious 37.41
Land Use	Acres	% Area
Residential	145.03	53.77
Commercial	41.78	15.49
Transportation	12.88	4,78
Woods	50.82	18.84
Open Space	19.22	7.12

Site ID PT0-916-T-2009

Sampling Date 4/22/2009 ADC Map # 9, B-6 Watershed = Patapsco Tidal Subwatershed = Stony Creek Location = Duvall Highway, south of Grace Avenue

Upstream from Mid-Point

Downstream from Mid-Point

This site is located off of Duvall Highway, south of Grace Avenue. Eighty percent of the landuse near this stream in Stony Creek in the Patapsco Tidal watershed is residential. The catchment has 35.4% impervious surfaces. Epifaunal substrate at this site is lacking in quality, but levels of embeddedness are lower at this site than they are at the majority of other sites sampled in this assessment. The stream is braided, with a partially shaded canopy. Its location only steps from the road could be to blame for the extreme levels of trash observed at the site. A road culvent is present at the site, and narrow riparian vegetative zones with buffer breaks as well as channelization in the form of gabion baskets hamper the habitat quality here. The overall PHI score was 61.7, Degraded. The overall RBP habitat score was 116 (58% comparable to reference conditions), with a narrative rating of Partially Supporting. Despite these rather poor habitat conditions, the benthic community at this site received a BIBI score of 3.57 (Fair), due to the presence of EPT, scraper, and climber taxa.

Results	Biological Co	ndition - F	air								
	Habitat Ratin	g: F	BP: P	Partially S	Supporting	MPH	I: Degrad	ded			
Stream Sul	bsystem = Pere	nnial		Strea	um Origin =	Spring-fed		S	tream T	ype = Warmv	vater
Proportion	of the Stream tha	1	Riffles Runs Pools	10 30 60		Some Potent	ial Source			tershed NPS I al Watershed	-nenent
Proportion of	of the Stream with	n Aquatic Ve	egetatio	n 10	1 .			Ro	ad Culv	ert Present ?	Yes
Percent of	Inorganic Subs	trate Comp	onents	s			L	eft Bu	ffer Brea	ks Present ?	Yes
Bedrock Boulder	0 Cobble	0 Sand 30 Silt Clay	50 20 0)		Evidence of		·	2 Mil 19 Mi 19 Mil 19 M	iks Present ? or Dredging ?	
Water Che	mistry	Temperatu	re (C)	11.7	Conduct	ivity (mS/cm)	0.205	pH	8,01	DO (ppm)	8.7

Site ID PT0-916-T-2009

Biological Benthic Condition

Metrics	Value	Scores	
Total Taxa	23	5	
EPT Taxa	5	5	
% Intolerant to Urban	56.76	5	
# Ephemeroptera	0	1	
% Ephemeroptera	0.00	1	
# Scraper	2	5	
% Climbers	2.70	3	
BIBI Score: 3.57 R	ating: Fa	air	

Taxa List

Taxa		Coun
Apsectrotanypu	IS	3
Aulodrilus		3
Bezzia		1
Chaetocladius		2
Gulicoides		2
Diplectrona		8
Eclipidrilus		1
Enchytraeidae		1
Hydrobaenus		1
Lepidostoma		2
Leucira		1
Meropelopia		1
Molophilus		10
Nais		15
Qulimnius		3
Paratendipes		2
Prodiamesa		9
Ptilostomis		7
Rheocricotopus	i i	1
Smittia		4
Synurella		47
Tanypodinae		2
Wormaldia		2
	Total Count	111

Physical Habitat

Maryland Biological Stream	m Survey PHI	
Drainage Area (acres)	187,71	
Remoteness	3.31	
Percent Shading	58.94	
Epifaunal Substrate	45,35	
Instream Habitat	65.95	
Instream Woody Debris	100.00	
Bank Stability	96.61	
PHI Score	61.69	
PHI Narrative Rating:	Degraded	
EPA Rapid Bioassessmen	t	
Epifaunal Substrate / Availal	ole Cover	8
Pool Substrate Characteriza	tion	11
Pool Variability		8
Sediment Deposition		13
Channel Flow Status		14
Channel Alteration		8
Channel Sinuosity		15
Bank Stability - Left Bank		В
Right Bank		8
Vegetative Protection - Left	Bank	8
Righ	t Bank	7
Riparian Vegetative Zone W	idth - Left Bank	3
	Right Bank	5
	RBP Score	116
RBP N	arrative Rating:	Partially Supporting
Land Use Analysis		
Income and the set in the second second	1 00 17 00 1	0F 14

Impervious Area (acres) 66.47	% Impe	rvious 35.41
Land Use	Acres	% Area
Residential	150.69	80.28
Commercial	0.44	0.23
Transportation	5.11	2.72
Woods	28.68	15.28
Open Space	2.79	1.49
the first state of the second state of the sec		and the second se

Appendix A

Site ID PT0-917-T-2009

Sampling Date 4/22/2009 ADC Map # 8, J-6 Watershed = Patapsco Tidal Subwatershed = Stony Creek Location = Solley Road, between Jackson Lane and Shady Brook Road

Upstream from Mid-Point

Downstream from Mid-Point

This site is in the Stony Creek subwatershed of the Patapsco Tidal watershed. It is located off of Solley Road between Jackson Lane and Shady Brook Road. The landuse upstream of this site is dominated by residential (53%) and wooded (almost 38%), and 20% of the catchment is considered impervious. Stream banks were moderately unstable to unstable, and erosion was obvious. Stream substrate was made up mainly of sand and gravel with some silt, and moderate levels of deposition were present. The overall PHI score was 65.8 (Degraded), while the overall RBP habitat score was 127 (Supporting). A moderate amount of trash was noted at the site. The benthic community consisted of only one EPT taxa, and no Ephemeroptera. Scrapers and climbers were present in healthy numbers, resulting in a BIBI score of 3.00, Fair.

Results	Biological Cor Habitat Rating		Fair RBP : S	Supportir	ng MP	HI: Degrad	ded			
Stream Sub	system = Perer	nnial		Strea	m Origin = Spring-fed		St	ream Ty	ype = Warmw	vater
Proportion of	of the Stream that	t is :	Riffles Runs Pools	20 20 60		No Evidenc			ershed NPS F al Watershed	
Proportion o	f the Stream with	Aquatic	Vegetatio	0 0			Roa	ad Culve	ert Present ?	No
Percent of Bedrock	Inorganic Subst	D San	d 60)	Evidence	Rig	ght Buff	er Brea	ks Present ? ks Present ? or Dredging ?	No
Water Chen	nistry	Tempera	ature (C)	11.3	Conductivity (mS/cm)	0.198	pН	8.3	DO (ppm)	11

Site ID PT0-917-T-2009

Biological Benthic Condition

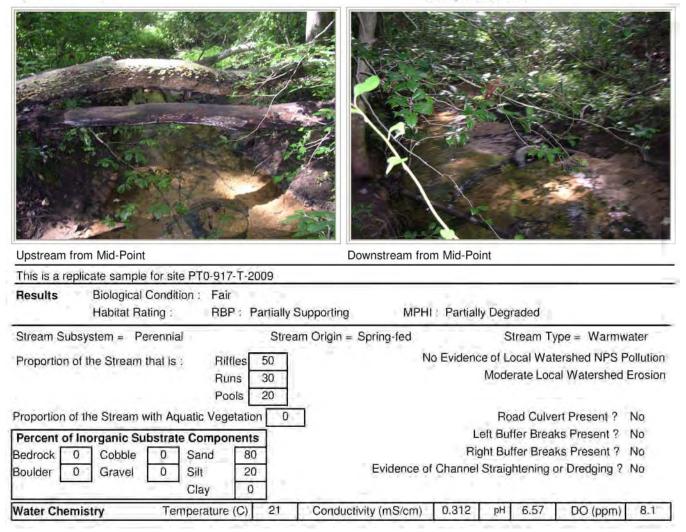
Metrics	Value	Scores
Total Taxa	29	5
EPT Taxa	1	1 -
% Intolerant to Urban	16.67	3
# Ephemeroptera	0	1
% Ephemeroptera	0.00	1
# Scraper	5	5
% Climbers	18.18	5
BIBI Score: 3.00 R	ating: Fa	air

Taxa List

Taxa	Count
Ancyronyx	1.5
Aulodrilus	1
Brillia	1
Calopteryx	1
Diplocladius	1
Eclipidritus	1
Enchytraeldae	1
Gammarus	3
Helichus	3
Hydrobaenus	1
Hydrobius	1
Ironoquia	1
Microvelia	1
Nais	7
Orthoeladius	2
Parakiefferiella	j –
Paraphaenocladius	3.0
Physa	1
Pisidium	5
Polypedilum	7
Potthastia	1
Pseudorthocladius	3
Slavina	5
Stenelmis	1
Synurella	9
Tanytarsus	2
Thienemanniella	1
Tipula	1
Tvetenia	2
Total Count	66

Physical Habitat

nysical habitat			
Maryland Biological Strea	m Survey PHI		
Drainage Area (acres)	554.26		
Remoteness	39.70		
Percent Shading	91.34		
Epifaunal Substrate	44.10		
Instream Habitat	77.07		
Instream Woody Debris	67.94		
Bank Stability	74.72		
PHI Score	65.81		
PHI Narrative Rating:	Degraded		
EPA Rapid Bioassessmen	t		
Epifaunal Substrate / Availa	ble Cover	13	
Pool Substrate Characteriza	ation	7	
Pool Variability		10	
Sediment Deposition		8	
Channel Flow Status		13	
Channel Alteration		18	
Channel Sinuosity		16	
Bank Stability - Left Bank		4	
Right Bank		2	
Vegetative Protection - Left	Bank	9	
Righ	t Bank	.9	
Riparian Vegetative Zone W	/idth - Left Bank	9	
	Right Bank	9	
	RBP Score	127	
RBP N	larrative Rating:	Supporting	
Land Use Analysis			
Impervious Area (acre	s) 111.35 % I	mpervious 20.09	-


Impervious Area (acres) 111.35	% Impe	ervious 20.09
Land Use	Acres	% Area
Residential	296.01	53.41
Commercial	15.17	2.74
Transportation	21.16	3.82
Woods	208.89	37,69
Open Space	13.04	2.35

Appendix A

Site ID PT0-D17-T-2009

Sampling Date 4/22/2009 ADC Map # 8, J-6 Watershed = Patapsco Tidal Subwatershed = Stony Creek Location = Solley Road, between Jackson Lane and Shady Brook Road

Site ID PT0-D17-T-2009

Biological Benthic Condition

Metrics	Value	Scores
Total Taxa	36	5
EPT Taxa	5	5
% Intolerant to Urban	26.72	3
# Ephemeroptera	0	1
% Ephemeroptera	0.00	1
# Scraper	6	5
% Climbers	8.62	5
BIBI Score: 3.57 R	ating: Fa	air

Taxa List

Taxa	Count	
Amphinemura	T.	
Ancyronyx	2	
Aulodrilus	2	
Boyeria	- Ye	
Calopteryx	A.	
Ceratopogon	4	
Chaetocladius	ŧ.	
Cordulegaster	1	
Cricotopus	1	
Diplectrona	1 C	
Diplocladius	3	
Dolophilodes	6	
Eukiefferiella	¥.	
Gammarus	з	
Helichus	2	
Lype	1	
Micropsectra	2	
Naididae (Tubificinae)	5	
Nais	8	
Neoporus	A.	
Onhocladius	13	
Oulimnius	7	
Parachaetocladius	2	
Parametriocnemus	2	
Physa	2	
Pisidium	2	
Polypedilum	4	
Rheotanytarsus	T.	
Slavina	5	
Stenelmis	T.	
Stenochironomus	3	
Synurella	9	
Taeniopteryx	2	
Thienemanniella	t	
Tipula	2	
Tvetenia	13	
Total Count	116	

Physical Habitat

Maryland Biological Strea	am Survey PHI		
Drainage Area (acres)	554.26		
Remoteness	59.13		
Percent Shading	91.34		
Epifaunal Substrate	44.10		
Instream Habitat	71.52		
Instream Woody Debris	73.86		
Bank Stability	59.16		
PHI Score	66.52		
PHI Narrative Rating	Partially Degrad	led	
EPA Rapid Bioassessme	at		
Epifaunal Substrate / Availa		13	
Pool Substrate Characteriz	ation	7	
Pool Variability Sediment Deposition		9	
		6	
Channel Flow Status		10	
Channel Alteration		18	
Channel Sinuosity		16	
Bank Stability - Left Bank		4	
Right Bank		3	
Vegetative Protection - Lef	Bank	9	
Rig	ht Bank	9	
Riparian Vegetative Zone \	Width - Left Bank	9	
	Right Bank	9	
	RBP Score	122	
	Istanting Detains	Partially Supporting	

Impervious Area (acres) 111.35	% Impervious 20.09	
Land Use	Acres	% Area
Residential	296.01	53.41
Commercial	15.17	2.74
Transportation	21.16	3.82
Woods	208.89	37.69
Open Space	13.04	2.35

Site ID PT0-925-T-2009

Sampling Date 4/23/2009 ADC Map # 8, K-3 Watershed = Patapsco Tidal Subwatershed = Stony Creek Location = Nabbs Creek Road, below Stoney Creek Park

Upstream from Mid-Point

Downstream from Mid-Point

This site is located off of Nabbs Creek Road, south of the bend below Stony Creek Park. It is in Stony Creek, in the Patapsco Tidal watershed. The majority of the landuse upstream of this site is wooded (86.6%), and therefore the catchment has the lowest percentage of impervious surfaces in the study (2.5%). The aesthetic quality of the stream was very good, as very little trash was present. Very few riffles were present in the stream, and those that were present were not of high quality. Thus, substrate for benthos was lacking. Despite all of the wooded area nearby, bank stability and vegetative protection along the banks was marginal, as was sediment deposition in the channel. The stream was not very sinuous, but channelization was not noted. This is not abnormal for coastal plain streams. This site rated Partially Degraded under the PHI (score of 74.2), and Partially Supporting under the RBP habitat assessment (score of 120). Its benthic community received a BIBI rating of Very Poor (score of 1.86). The benthic community did not have a lot of diversity at this site, as only ten types of taxa were collected. However, the community at this site had the highest percentage of benthos intolerant to urban conditions (91%).

Results	Biological Habitat Ra	Condition : ating :		or Partially Su	oporting	MPHI	: Partiall	y Degr	aded		
Stream Sut	system = Pe	erennial		Stream	Origin = Spring-	ed	5. J	S	tream Ty	/pe = Warmv	vater
Proportion	of the Stream	that is :	Riffles Runs Pools	10 70 20		No	o Evidenc			ershed NPS F al Watershed	
Proportion o	f the Stream v	with Aquation	C Vegetatio	on 15				Ro	ad Culve	ert Present ?	No
Percent of	Inorganic Su	Ibstrate Co	mponent	s			L	eft Buf	fer Brea	ks Present ?	No
Bedrock	Cobble Gravel	0 Sa 25 Sil Cla	nd 68	5-	Evide	ence of	1. PH			ks Present ? or Dredging ?	
Water Cher	nistry	Tempe	rature (C)	14.4	Conductivity (mS	S/cm)	0,083	рH	7.73	DO (ppm)	10.5

Site ID PT0-925-T-2009

Biological Benthic Condition

Metrics	Value	Scores
Total Taxa	10	1
EPT Taxa	3	3
% Intolerant to Urban	91.23	5
# Ephemeroptera	0	1
% Ephemeroptera	0.00	1
# Scraper	0	1
% Climbers	0.88	1
BIBI Score: 1.86 R	ating: Ve	ery Poor

Taxa List

Taxa		Count	
Chaetocladius		1	
Enchytraeidae		3	
Gammarus		2	
Ironoquía		1	
Reomyia		2	
Shipsa		55	
Stegopterna		21	
Synurella		26	
Tanytarsus		1	
Wormaldia		2	
	Total Count	114	

Physical Habitat

Maryland Biological Strea	am Survey PHI		
Drainage Area (acres)	129.96		
Remoteness	91.57		
Percent Shading	49.95		
Epifaunal Substrate	53.55		
Instream Habitat	69.72		
Instream Woody Debris	100.00		
Bank Stability	80.63		
PHI Score	74.24		
PHI Narrative Rating	: Partially Degrad	led	
EPA Rapid Bioassessme	nt		
Epifaunal Substrate / Availa	able Cover	6	
Pool Substrate Characteriz	12		
Pool Variability		8	
Sediment Deposition		7	
Channel Flow Status		19	
Channel Alteration		19	
Channel Sinuosity		-11	
Bank Stability - Left Bank		5	
Right Bank		4	
Vegetative Protection - Lef	t Bank	5	
Rig	ht Bank	4	
Riparian Vegetative Zone V	Nidth - Left Bank	10	
	Right Bank	10	
	RBP Score	120	
RBP	Narrative Rating:	Partially Supporting	

Land Use Analysis

Impervious Area (acres) 3.31	% Impe	ervious 2.55
Land Use	Acres	% Area
Residential	9.42	7.25
Commercial	1.80	1.38
Utility	1.91	1.47
Transportation	3.61	2.78
Woods	112.53	86.59
Open Space	0.69	0.53

Appendix A

Site ID PT0-940-T-2009

Sampling Date 4/30/2009 ADC Map # 8, J-5 Watershed = Patapsco Tidal Subwatershed = Stony Creek Location = Stone Haven Drive

Upstream from Mid-Point

Downstream from Mid-Point

This highly braided site is in Stony Creek in the Patapsco Tidal watershed. The site can be found behind a double-lot property off of Stone Haven Drive. The catchment surrounding this stream is dominated by wooded and residential landuse, in approximately equal amounts (43% and 44%, respectively). Impervious surfaces account for about 15.5% of the catchment area at this site. The field crew noticed an oily sheen in the stream as well as a significant amount of trash. All in situ water quality, except for conductivity were within the normal range. This site had the highest conductivity of all sites sampled and it is likely indicative of a water quality issue. The substrate at this site was about equally composed of sand and silt, and the site received a Marginal rating for epifaunal substrate and available cover. Submerged and emergent aquatic vegetation were present, along with some algae. Bank stability also rated as Marginal, and moderate amounts of erosion were noted in the local watershed. There were large amounts of both instream and dewatered wood present in this stream. Overall, this site received a total RBP habitat score of 107 (Partially Supporting) and a total PHI score of 82.6 (Minimally Degraded). The benthic community rated Poor, with a total BIBI score of 2.14. This score is a result of the lack of any EPT taxa in the stream, as well as a lack of any individuals that are considered intolerant of urban conditions.

Results	Biological Con Habitat Rating		Partially	Supporting	MPH	I : Minima	ally Dep	graded		
Stream Sub	system = Perenr	nial	Stre	am Origin = S	Swamp and B	og	S	tream Ty	/pe = Warmv	vater
	of the Stream that	Runs Pool	s 75 s 20	-	N	o Evidenc	Mode	rate Loc	ershed NPS F al Watershed	Erosion
and the second s			111 A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		Evidence of	Rig	eft Buf ght Bul	fer Brea fer Brea	ert Present ? ks Present ? ks Present ? or Dredging ?	No No
Water Chemistry Temperatur			C) 13.6	Conductiv	ity (mS/cm)	0.857	рН	6.98	DO (ppm)	7

Site ID PT0-940-T-2009

Biological Benthic Condition

Metrics	Value	Scores
Total Taxa	12	1
EPT Taxa	0	1
% Intolerant to Urban	0.00	1
# Ephemeroptera	0	1
% Ephemeroptera	0.00	1
# Scraper	2	5
% Climbers	47.62	5

BIBI Score: 2.14 Rating: Poor

Taxa	Count
Aedes	2
Aulodrilus	16
Chironomus	1
Ischnura	1
Lumbricidae	t
Lymnaea	2
Naididae (Tubificinae)	18
Physa	47
Pisidium	9
Prostoma	з
Spirosperma	4
Tipula	1
Total Count	105

Physical Habitat

Mondand Biological Street	- Curvey DUI	
Maryland Biological Stream		
Drainage Area (acres)	159.46	
Remoteness	40.76	
Percent Shading	84.56	
Epifaunal Substrate	98.69	
Instream Habitat	84.27	
Instream Woody Debris	100.00	
Bank Stability	87.56	
PHI Score	82.64	
PHI Narrative Rating:	Minimally Degra	aded
EPA Rapid Bioassessment		
Epifaunal Substrate / Availab	ole Cover	6
Pool Substrate Characteriza	tion	6
Pool Variability		6
Sediment Deposition		7
Channel Flow Status		15
Channel Alteration		15
Channel Sinuosity		13
Bank Stability - Left Bank		5
Right Bank		5
Vegetative Protection - Left I	Bank	8
Loog Loop States and States and States	Bank	8
Riparian Vegetative Zone W		9
and the second se	Right Bank	
	RBP Score	107
RBP N	arrative Rating:	Partially Supporting

	Impervious Area (acres) 2	4.80 % Imp	ervious 15.55
	Land Use	Acres	% Area
	Residential	68.02	42.66
	Commercial	0.94	0.59
	Industrial	1.11	0.70
	Transportation	6.28	3.94
	Woods	69.40	43.52
	Open Space	13.70	8.59
-			

Site ID PT2-949-T-2009

Sampling Date 4/22/2009 ADC Map # 3, C-6 Watershed = Patapsco Tidal Subwatershed = Cabin Branch 2 Location = Cedar Hill Cemetary, off of Cedar Hill Lane

Upstream from Mid-Point

Downstream from Mid-Point

This site is located in Cabin Branch Creek 2, in the Patapsco Tidal watershed. The stream site is southeast of the central loop of Cedar Hill Cemetery off of Cedar Hill Lane. Landuse upstream of this site is dominated by residential (57%) and open space (30%), with fairly high levels of impervious surfaces (42% of all surfaces). Embeddedness was low at this site, and epifaunal substrate rated as Suboptimal. The stream was fairly straight, and composed mainly of runs with a few riffles. Its substrate was made up of similar amounts of cobble, gravel, sand, and silt. RBP habitat rated Supporting (73% comparable to reference, total score of 146), while the PHI score was 79.4, or Partially Degraded. Benthos at this site rated Very Poor, with a BIBI score of 1.57. No Ephemeroptera or scraper taxa were present at this site, and none of the macroinvertebrates obtained in the benthic sample were considered intolerant of urban conditions.

Results	Biological (Habitat Ra		Very Poo RBP ; S		g MPHI	Partial	ly Degr	aded		
Stream Subsystem = Perennial				Stream	m Origin = Swamp and Bo	bg	S	tream Ty	/pe = Warmw	vater
	of the Stream t		Riffles Runs Pools	45 50 5	N	o Evidenc	Constant and		ershed NPS F al Watershed	Terminican
Proportion c	f the Stream w	ith Aquatic	Vegetatio	n 0			Ro	ad Culve	ert Present ?	No
Percent of Bedrock Boulder	Inorganic Sul Cobble Gravel	25 Sar 30 Silt	nd 25 20		Evidence of	Rig	ght Buf	fer Brea	ks Present ? ks Present ? or Dredging ?	No
Water Cher	nistry	Cla Tempera	y 0 ature (C)	10.6	Conductivity (mS/cm)	0.513	рН	6.93	DO (ppm)	9.1

Site ID PT2-949-T-2009

Biological Benthic Condition

Metrics	Value	Scores	
Total Taxa	20	3	
EPT Taxa	1	1	
% Intolerant to Urban	0.00	1	
# Ephemeroptera	0	1	
% Ephemeroptera	0.00	1	
# Scraper	O	1	
% Climbers	5.05	3	
BIBI Score: 1.57 R	ating: Ve	ery Poor	

Taxa List

Taxa		Count
Calopteryx		1
Ceratopogonid	ae	2
Chaelocladius		15
Cheumatopsyc	the	3
Enchytraeidae		8
Eukiefteriella		1
Limnodrilus		3
Limnophyes		1
Lumbricidae		1
Lumbriculus		1
Naididae (Tubi	licinae)	19
Nais		2
Orthocladius		26
Phaenopsectra	3	1
Polypedilum		4
Psectrotanypu	5	1
Simulium		4
Smittia		3
Tipula		2
Tvetenia		1
	Total Count	99

Physical Habitat

Maryland Biological Stream	n Survey PHI	
Drainage Area (acres)	144.68	
Remoteness	28.28	
Percent Shading	73.32	
Epifaunal Substrate	100.00	
Instream Habitat	90.81	
Instream Woody Debris	86.10	
Bank Stability	97.98	
PHI Score	79.42	
PHI Narrative Rating:	Partially Degrad	ed
EPA Rapid Bioassessment		
Epifaunal Substrate / Availab		14
Pool Substrate Characteriza	tion	16
Pool Variability		11
Sediment Deposition		13
Channel Flow Status		16
Channel Alteration		18
Channel Sinuosity		8
Bank Stability - Left Bank		8
Right Bank		8
Vegetative Protection - Left I	Bank	8
Right	Bank	8
Riparian Vegetative Zone W	idth - Left Bank	9
	Right Bank	9
	RBP Score	146
2024	arrative Rating:	0

Land Use Analysis

Impervious Area (acres) 60.82	% Imperviou:	s 42.03
Land Use	Acres % A	rea
Residential	82.50 57.	.02
Commercial	10,23 7.0	07
Industrial	0.22 0.1	15
Transportation	5.43 3.	75
Woods	3.06 2.7	11
Open Space	43.25 29.	.89

Appendix A

Site ID PT2-950-T-2009

Sampling Date 4/22/2009 ADC Map # 3, D-3 Watershed = Patapsco Tidal Subwatershed = Cabin Branch 2 Location = West of undeveloped portion of Arundel Boulevard

Upstream from Mid-Point

Downstream from Mid-Point

This braided stream site is located to the west of the undeveloped portion of Arundel Boulevard. It is in Cabin Branch Creek 2, part of the Patapsco Tidal watershed. Landuse above this site is 52% residential, with some open space (22%) and wooded areas (19%). While bank erosion at this site was very minimal, the stream is highly embedded and substrate for benthos is marginal. The benthic community at this site rated Poor, with a BIBI score of 2.71. Scrapers and climbers were found in healthy numbers at this site, but no EPT taxa were present in the benthic sample, nor were there many macroinvertebrates intolerant of degraded urban condition. ATV tracks near the site indicate activity that may be contributing to less than optimal habitat conditions. The stream rated Partially Degraded under the PHI (total score of 74.7), and Partially Supporting under the RBP habitat with a total score of 121 (60.5% comparable to reference). Channel substrate was dominated by sand with some silt, and in situ water guality parameters were within the normal range.

Results		al Condition									
	Habitat I	Rating :	RBP :	Partially	Supporting	MPH	: Partiall	y Degr	aded		
Stream S	ubsystem =	Perennial		Stre	am Origin =	Swamp and B	og	S	tream Ty	/pe = Warmv	vater
Proportion	of the Stream	n that is :	Riffles	5		N	o Evidenc	e of Lo	cal Wat	ershed NPS F	ollution
			Runs	95				N	one Loca	al Watershed	Erosion
			Pools	0							
Proportion	of the Stream	with Aquati	ic Vegetat	ion 0				Roa	ad Culve	rt Present ?	No
Percent o	of Inorganic S	Substrate C	omponen	ts			L	eft Buf	fer Breal	ks Present ?	No
Bedrock	0 Cobble	0 Sa	and 1	30						ks Present ?	
Boulder	0 Gravel	0 Si	lt 🗄	20		Evidence of	Channel	Straig	ntening o	or Dredging ?	No
		CI	ay	0							
Water Che	emistry	Tempe	rature (C)	13.8	Conducti	vity (mS/cm)	0.164	pН	7.02	DO (ppm)	8.5

Site ID PT2-950-T-2009

Biological Benthic Condition

Metrics	Value	Scores
Total Taxa	25	5
EPT Taxa	O	1
% Intolerant to Urban	1.09	1 -
# Ephemeroptera	0	1
% Ephemeroptera	0.00	1
# Scraper	2	5
% Climbers	11.96	5
BIBI Score: 2.71 R	ating: Po	oor

Taxa List

Taxa		Coun
Agabus		1
Aulodrilus		1
Caecidotea		3
Corynoneura		3
Cricotopus		5
Culicidae		1
Diplocladius		1
Enchytraeidae		17
Erioptera		1
Hydrobaenus		1
Hydroporus		Ť
llyodrilus		з
Limnophyes		9
Lumbricidae		8
Lumbriculus		7
Naididae (Tubific	cinae)	9
Nais		1
Paratanytarsus		2
Physa		6
Polypedilum		5
Psectrotanypus		4
Smittia		3
Thienemanniella	C -	1
Tribelos		1
Turbellaria		2
	Total Count	92

Physical Habitat

Maryland Biological Strea	m Survey PHI	
Drainage Area (acres)	342.47	
Remoteness	71.68	
Percent Shading	78.67	
Epifaunal Substrate	58.86	
Instream Habitat	65.35	
Instream Woody Debris	73.39	
Bank Stability	100.00	
PHI Score	74.66	
PHI Narrative Rating:	Partially Degrad	led
EPA Rapid Bioassessmen	t	
Epifaunal Substrate / Availa	ble Cover	7
Pool Substrate Characteriza	tion	8
Pool Variability		7
Sediment Deposition		9
Channel Flow Status		15
Channel Alteration		14
Channel Sinuosity		13
Bank Stability - Left Bank		9
Right Bank		9
Vegetative Protection - Left	Bank	6
Righ	t Bank	6
Riparian Vegetative Zone W	hidth - Left Bank	9
	Right Bank	9
	RBP Score	121
RBP N	arrative Rating:	Partially Supporting

	Impervious Area (acres)	109.85	% Impe	ervious 32.07
-	Land Use		Acres	% Area
	Residential		180.03	52.68
	Commercial		13.31	3.90
	Industrial		0.22	0.07
	Transportation		7.56	2.21
	Woods		64.91	18.99
	Open Space		75.69	22.15

Site ID PT3-944-T-2009

Sampling Date 4/21/2009 ADC Map # 2, G-9 Watershed = Patapsco Tidal Subwatershed = Cabin Branch Location = Meadow Road

Upstream from Mid-Point

Downstream from Mid-Point

This Cabin Branch Creek site in the Patapsco Tidal watershed is located at the southeast corner of Meadow Road. A variety of landuses exist in the catchment surrounding this site, but the most prevalent landuse is residential (approximately 41%). Along with the residential landuse, commercial, industrial, transportation, and utility landuses contribute to the 43% impervious surfaces in this catchment. Open space (16.6%) and wooded landuses (11.3%) are also present. In situ pH measured at this site was 6.13, slightly below the state water quality minimum standard of 6.50. Other water quality parameters were within normal ranges. Very little trash was present at the site. Embeddedness was very high, while bank erosion was minimal. Under the PHI, this site received a score of 66.4 (Partially Degraded). Total RBP habitat score was 127 (Supporting). Despite a fairly moderate habitat, as evaluated under both the PHI and RBP assessments, the benthic community at this site is in Very Poor condition according to the BIBI (BIBI score of 1.86). Only 8 kinds of taxa were found at this site, and no EPT nor pollution-intolerant taxa were found.

Results		cal Condition	1: Very RBP	Poor : Sup	oporting	g N	PHI :	Partiall	y Degi	raded		
Stream Sut	system =	Perennial		-	Stream	n Origin = Swamp a	nd Bo	g	S	tream T	ype = Warmv	vater
Proportion	of the Strea	am that is :	Riff Rur Poo	IS 8	20 30 0		No	Evidenc			tershed NPS F al Watershed	
	1. 2. 1. 1. 1. 1.	m with Aqua	- -	March 1	0]		. Fe			ert Present ? ks Present ?	No No
Bedrock	Cobb Grave	el 0 S	Compon Sand Silt Clay	ents 80 10 0		Eviden	ce of (Rig	ght Bu	ffer Brea	iks Present ? or Dredging ?	No
Water Cher	nistry	Temp	erature	(C)	17.2	Conductivity (mS/c	m)	0.285	pН	6.13	DO (ppm)	8.3

Site ID PT3-944-T-2009

Biological	Benthic	Condition
------------	---------	-----------

Metrics	Value	Scores
Total Taxa	8	1
EPT Taxa	0	1
% Intolerant to Urban	0.00	1
# Ephemeroptera	0	1
% Ephemeroptera	0.00	đ i
# Scraper	1	3
% Climbers	16.67	5
BIBI Score: 1.86 Ra	ating: Ve	ery Poor

Taxa List

Taxa		Count
Crambidae		1
Culex		1 -
Enchytraeidae		9
Lumbricidae		6
Lymnaea		з
Phaenopsectra		1
Pseudosmittia		2
Unionicola		_ 1
	Total Count	24

Physical Habitat

Drainage Area (acres) 78	6.41	
Remoteness 24	4.93	
Percent Shading 73	3.32	
Epifaunal Substrate 76	5.68	
Instream Habitat 62	2,39	
Instream Woody Debris 61	1.02	
Bank Stability 10	0.00	
PHI Score 66	5.39	
PHI Narrative Rating: Part	ially Degrad	led
EPA Rapid Bioassessment		
Epifaunal Substrate / Available C	over	11
Pool Substrate Characterization		13
Pool Variability		8
Sediment Deposition		11
Channel Flow Status		14
Channel Alteration		16
Channel Sinuosity		11
Bank Stability - Left Bank		8
Right Bank		8
Vegetative Protection - Left Bank	ς	5
Right Bar	nk.	5
Riparian Vegetative Zone Width	- Left Bank	8
	Right Bank	9
	RBP Score	127
RBP Narrat	ive Rating:	Supporting
Land Use Analysis		

Use Analysis

Impervious Area (acres) 341.41 % Impervious 43.41

	Land Use	Acres	% Area	
	Residential	320.70	40.78	
	Commercial	58.95	7.50	
	Industrial	67.63	8.60	
	Utility	3.81	0.48	
	Transportation	41.60	5.29	
	Airport	70.89	9.01	
	Woods	88.89	11.30	
	Open Space	130.55	16.60	
	Water	3.39	0.43	
1			-	-

Site ID PT3-947-T-2009

Sampling Date 4/22/2009 ADC Map # 3, A-8 Watershed = Patapsco Tidal Subwatershed = Cabin Branch Location = Behind Beltway Crossing Shopping Center

Upstream from Mid-Point

Downstream from Mid-Point

Located in the west corner of the Beltway Crossing Shopping Center, this Cabin Branch Creek site is part of the Patapsco Tidal watershed. There are a wide variety of landuses in the surrounding catchment, including residential (46%), wooded areas (18.5%), and smaller percentages of open space, transportation, commercial, industrial, airport, utility, and water landuses. Thirty-eight percent of the catchment is impervious. All water quality parameters measured at this site fell within normal ranges. Moderate amounts of bank erosion were noted by field staff at this site, with the right bank having the poorest bank stability. A moderate amount of trash was present at the time of sampling. Both epifaunal substrate and pool substrate received optimal ratings. Channel substrate was dominated by gravel (60%) with some cobble and sand (20% of each). The total RBP habitat assessment score at this site was 152. Comparable to Reference, while the PHI rated the site as Partially Degraded, with a score of 71. None of the benthic macroinvertebrates obtained through benthic sampling at this site were considered intolerant to urban conditions, and only 1 EPT taxon was present in the sample. Thus, even with some good substrate for biota, high quality macroinvertebrates are not occupying this site. The overall BIBI score was 2.14, a rating of Poor.

Results	Biological Co Habitat Ratir		Poor RBP : C	ompar	able to Reference MPH	HI: Partial	y Deg	raded		
Stream Sub	system = Pere	ennial		Stre	am Origin = Spring-fed		S	tream Ty	/pe = Warmw	ater
Proportion o	of the Stream th	at is :	Riffles Runs Pools	20 20 60		No Evidenc		2	ershed NPS F al Watershed	a constant
Percent of Bedrock		A	ponents	5	Evidence	Rig	eft Bui ght Bu	lfer Breal Ifer Brea	ert Present ? ks Present ? ks Present ? or Dredging ?	No No
Water Chen	nistry	Temperat	ure (C)	11.9	Conductivity (mS/cm)	0.339	рН	7.98	DO (ppm)	11.7

Appendix A

Site ID PT3-947-T-2009

Biological Benthic Condition

Metrics	Value	Scores
Total Taxa	15	3
EPT Taxa	1	1
% Intolerant to Urban	0.00	0.1
# Ephemeroptera	0	1
% Ephemeroptera	0.00	1
# Scraper	2	5
% Climbers	5.56	3
BIBI Score: 2.14 Ra	ating: Po	noc

Taxa List

Taxa	Count
Cheumatopsyche	1
Cricotopus	1
Enchytraeidae	1
Helichus	Ŧ.
Lepidoptera	· · ·
Liodessus	1
Lymnaea	1
Nais	2
Odontomyia/Hedriodiscus	- 't
Orthocladius	1
Simulium	2
Smittia	9
Stygobromus	2
Thienemanniella	1
Turbellaria	1
Total Count	18

Physical Habitat

Maryland Biological Stream	m Survey PHI	
Drainage Area (acres)	1808.57	
Remoteness	31.22	
Percent Shading	91.34	
Epifaunal Substrate	100.00	
Instream Habitat	92.70	
Instream Woody Debris	45.67	
Bank Stability	65.19	
PHI Score	71.02	
PHI Narrative Rating:	Partially Degraded	

EPA Rapid Bioassessment

and the second sec	
Epifaunal Substrate / Available Cover	18
Pool Substrate Characterization	16
Pool Variability	15
Sediment Deposition	16
Channel Flow Status	12
Channel Alteration	18
Channel Sinuosity	15
Bank Stability - Left Bank	5
Right Bank	3
Vegetative Protection - Left Bank	8
Right Bank	8
Riparian Vegetative Zone Width - Left Bank	9
Right Bank	9
RBP Score	152
DBD Marrativo Patina-	Comparable to Rei

RBP Narrative Rating: Comparable to Reference

Impervious Area (acres)	693.32	% Impe	ervious 38.34
Land Use		Acres	% Area
Residential		838.10	46.34
Commercial		114.13	6.31
Industrial		81.40	4.50
Utility		33.06	1.83
Transportation		143.49	7,93
Airport		70.89	3.92
Woods		334.00	18.47
Open Space		190.11	10.51
Water		3.39	0.19

Site ID PT3-D47-T-2009

Sampling Date 4/22/2009 ADC Map # 3, A-8 Watershed = Patapsco Tidal Subwatershed = Cabin Branch Location = Behind Beltway Crossing Shopping Center

Upstream from Mid-Point

Downstream from Mid-Point

This is a replicate sample for site PT3-947-T-2009. Please note that the photos were taken during a return visit in August 2009. At that time, both the original and duplicate stream reaches were dry. Photos attached do not indicate the condition of stream at the time of benthic sampling.

Results	-	Condition :							
	Habitat Ra	ating :	RBP : S	Supporting	J MF	PHI: Partially De	graded		
Stream Sub	osystem = Pe	erennial		Stream	n Origin = Spring-fed		Stream Type =	Warmw	vater
Proportion	of the Stream	that is :	Riffles	25		No Evidence of	Local Watershe	d NPS F	ollution
			Runs Pools	50 25		Moo	lerate Local Wa	atershed	Erosion
Proportion o	f the Stream	with Aquatic	Vegetatio	0 0	1	F	load Culvert Pre	esent ?	Yes
Percent of	Inorganic Su	ibstrate Co	mponent	s		Left B	uffer Breaks Pr	esent?	No
Bedrock	0 Cobble	50 Sa				Right B	uffer Breaks Pr	esent ?	No
Boulder	0 Gravel	30 Silt Cla			Evidence	of Channel Stra	ightening or Dre	edging?	Yes
Water Cher	nistry	Temper	ature (C)		Conductivity (mS/cm) pH	D	(mqq) C	

Site ID PT3-D47-T-2009

Biological Benthi	c Condition		
		-	

Metrics	Value	Scores
Total Taxa	19	3
EPT Taxa	2	3
% Intolerant to Urban	0.00	1
# Ephemeroptera	0	1
% Ephemeroptera	0.00	1
# Scraper	1	3
% Climbers	11.27	5

BIBI Score: 2.43 Rating: Poor

Taxa List

F	Taxa	Count	
	Ancyronyx	2	
	Aulodrilus	. 1	
	Bezzia	2	
	Chaetocladius	4	
	Cheumatopsyche	2	
	Cricotopus	- 1	
	Gammarus	I	
	Ironoguia	Ĭ.	
	Naididae (Tubificinae)	1	
	Nais	7	
	Orthocladius	16	
	Paratendipes	12	
	Polypedilum	7	
	Rheotanytarsus	2	
	Simulium	1	
	Smittia	-1	
	Tanytarsus	- d	
	Thienemanniella	2	
	Tvetenia	7	
	Total Count	71	

Physical Habitat

Maryland Biological Stream	m Survey PHI
Drainage Area (acres)	1808.57
Remoteness	12.14
Percent Shading	99.94
Epifaunal Substrate	100.00
Instream Habitat	92.70
Instream Woody Debris	36.80
Bank Stability	71.18
PHI Score	68.79
PHI Narrative Rating:	Partially Degraded

EPA Rapid Bioassessment

the second s		
Epifaunal Substrate / Available Cover	17	
Pool Substrate Characterization	15	
Pool Variability	15	
Sediment Deposition	16	
Channel Flow Status	15	
Channel Alteration	10	
Channel Sinuosity	8	
Bank Stability - Left Bank	5	
Right Bank	3	
Vegetative Protection - Left Bank	8	
Right Bank	8	
Riparian Vegetative Zone Width - Left Bank	7	
Right Bank	7	
RBP Score	134	
RBP Narrative Rating:	Supporting	

Impervious Area (acres) 693.32	% Impe	ervious 38.34
Land Use	Acres	% Area
Residential	838.10	46.34
Commercial	114.13	6.31
Industrial	81,40	4.50
Utility	33.06	1.83
Transportation	143.49	7.93
Airport	70.89	3.92
Woods	334.00	18.47
Open Space	190.11	10.51
Water	3.39	0.19

Site ID PT3-948-T-2009

Sampling Date 4/22/2009 ADC Map # 3, D-7 Watershed = Patapsco Tidal Subwatershed = Cabin Branch Location = Snow Hill Lane

Upstream from Mid-Point

Downstream from Mid-Point

This braided Cabin Branch Creek site in the Patapsco Tidal watershed can be accessed from the left side of a trail that crosses Snow Hill Lane, and then cutting southeast into the woods. The dominant landuses in the catchment surrounding this site are residential (41%) and wooded (24%), but many other types of landuse are present, including open space, transportation, commercial, industrial, airport, utility, and water landuses. Just over one-third of the catchment area is impervious surface. The field crew noted a large amount of trash present at the time of sampling. Both epifaunal substrate and pool substrate variability received marginal ratings, and sediment deposition was poor. Silt and sand dominated the channel substrate (95% of channel substrate materials when combined). Overall, the total RBP habitat score was 105 (Partially Supporting), one of the lowest scores of all sites in this study. The PHI also rated the stream poorly, with an overall score of 57.1 (Degraded), the second lowest PHI score of all sites in the study. The benthic macroinvertebrate community at the site rated Poor, with a BIBI score of 2.43. Despite a wide variety of taxa obtained through sampling (n=28), no EPT taxa were present, and only six percent of the benthos obtained were considered intolerant to urban conditions.

Results	Biological Cond Habitat Rating		Partially Supporting	MPHI	. Degraded			
Stream Sut	osystem = Perenni	al	Stream Origin =	Swamp and Bo	og	Stream Ty	pe = Warm	water
Proportion	of the Stream that is	s : Riffles Runs Pools	80	No	o Evidence o	of Local Wate None Loca	ershed NPS al Watershed	a contract of
Proportion of	of the Stream with A	quatic Vegeta	tion 0			Road Culve	rt Present ?	No
Percent of	Inorganic Substra	te Componer	nts		Left	Buffer Break	s Present?	No
	0 Cobble 0 0 Gravel 5	Silt	45 50 0	Evidence of	•	Buffer Break aightening o		
Water Cher	nistry Te	emperature (C) 11.4 Conduc	tivity (mS/cm)	0.652	рН 7,02	DO (ppm)	10.7

Site ID PT3-948-T-2009

Biological Benthic Condition

Metrics	Value	Scores
Total Taxa	28	5
EPT Taxa	0	1
% Intolerant to Urban	5.61	1
# Ephemeroptera	0	1
% Ephemeroptera	0.00	1
# Scraper	2	5
% Climbers	4.67	3
BIBI Score: 2.43 Ra	ating: Po	oor

Taxa List

Taxa	Count
Caecidotea	4
Chaetocladius	5
Chironomus	1
Cryptochironomus	7
Dero	1
Enchytraeidae	2
Erioptera	4
Gammarus	39
Hydrobaenus	1
schnura	t
Limnophyes	1
Limonia	1
Lumbricidae	1
Mallochohelea	2
Menetus	1
Micropsectra	2
Naididae (Tubificinae)	9
Nais	1
Natarsia	3
Neoporus	1
Orthocladius	6
Phaenopsectra	3
Pisidium	3
Polypedilum	- X.
Pseudosmittia	3
Smittia	Ť
Stictochironomus	6
Tipulidae	ī
Total Count	107

Physical Habitat

Drainage Area (acres)	2421.90	
Remoteness	42.78	
Percent Shading	36.34	
Epifaunal Substrate	40.30	
Instream Habitat	45.33	
Instream Woody Debris	77.87	
Bank Stability	100.00	
PHI Score	57,10	
PHI Narrative Rating:	Degraded	

EPA Rapid Bioassessment

Er A hupid bioussessment	
Epifaunal Substrate / Available Cover	6
Pool Substrate Characterization	6
Pool Variability	6
Sediment Deposition	5
Channel Flow Status	13
Channel Alteration	11
Channel Sinuosity	11
Bank Stability - Left Bank	7
Right Bank	7
Vegetative Protection - Left Bank	8
Right Bank	7
Riparian Vegetative Zone Width - Left Bank	9
Right Bank	9
RBP Score	105
RBP Narrative Rating:	Partially Supporting

	Impervious Area (acres)	859.19	% Impervious	35.48	
_	and the second se		-		

Land Use	Acres	% Area	
Residential	1000.65	41.32	
Commercial	164.68	6.80	
Industrial	97,58	4.03	
Utility	33.06	1.36	
Transportation	214.53	8.86	
Airport	70.89	2.93	
Woods	584.37	24.13	
Open Space	252.76	10.44	
Water	3.39	0.14	

Site ID PT5-929-T-2009

Sampling Date 4/21/2009 ADC Map # 8, C-1 Watershed = Patapsco Tidal Subwatershed = Furnace Creek Location = Furnace Branch Road

Upstream from Mid-Point

Downstream from Mid-Point

Just off of Furnace Branch Road, near the north corner of the school parking lot is site PT5-929-T-2009. This is in Furnace Creek in the Patapsco Tidal watershed. The most prevalent landuse in the catchment of this site is residential (63%), with 13% commercial landuse the next most prevalent. These landuses contribute to the 41% imperviousness of the catchment. In situ water quality parameters measured at this site were within acceptable ranges. Significant amounts of trash were noted by the field crew at the time of sampling. The site was approximately 75% embedded, and instream habitat conditions, including epifaunal substrate and pool substrate, were poor to marginal, with very little pool variability and a great amount of sediment deposition. The total RBP score at this site as harshly (PHI = 70.0, Partially Degraded), but did note poor epifaunal substrate. and a lack of instream habitat, including only one piece of instream wood. These poor habitat conditions contribute to the Very Poor benthic community present in this stream (BIBI = 1.57). No EPT taxa were present, and no taxa were considered to be intolerant of urban conditions.

Results	Biological Condition Habitat Rating :			upporting MPI	HI: Partial	ly Degra	aded		
Stream Sub	osystem = Perennial			m Origin = Swamp and	and a standard		Contra la contra	vpe = Warmw	ater
Proportion of	of the Stream that is :	Riffles Runs Pools	20 35 45		No Eviden		Edu Verale	ershed NPS F al Watershed	Constraints of the
Percent of	0 Gravel 10 Si	omponent	s 5] Evidence	Ri	.eft Buff ght Buff	er Breal er Brea	ert Present ? ks Present ? ks Present ? or Dredging ?	S. 27. 1
Water Chen		rature (C)	11.9	Conductivity (mS/cm)	0.54	pH	7.32	DO (ppm)	11.3

Site ID PT5-929-T-2009

Biological Benthic Condition

Metrics	Value	Scores
Total Taxa	19	3
EPT Taxa	0	t
% Intolerant to Urban	0.00	1
# Ephemeroptera	0	
% Ephemeroptera	0.00	1
# Scraper	1	з
% Climbers	0.00	1
BIBI Score: 1.57 R	ating: Ve	ery Poor

Taxa List

Taxa	Count	
Chaetocladius	T	
Corynoneura	3	
Cricotopus	з	
Eclipidrilus	3	
Enchytraeidae	34	
Gammarus	10	
Helichus	1	
Limnophyes	7	
Lumbricidae	4	
Naididae (Tubificinae)	1	
Nais	24	
Orthocladiinae	2	
Orthocladius	- 1	
Paratendipes	4	
Pristina	6	
Prodiamesa		
Sciomyzidae	1	
Smittia	2	
Turbellaria	2	
Total Count	110	

Physical Habitat

Maryland Biological Stream	m Survey PHI	
Drainage Area (acres)	126.52	
Remoteness	38.62	
Percent Shading	91.34	
Epifaunal Substrate	53.73	
Instream Habitat	64.44	
Instream Woody Debris	72.83	
Bank Stability	99.17	
PHI Score	70.02	
PHI Narrative Rating:	Partially Degrad	led
EPA Rapid Bioassessmen	t	
Epifaunal Substrate / Availal	ble Cover	5
Pool Substrate Characteriza	tion	6
Pool Variability		4
Sediment Deposition		8
Channel Flow Status		17
Channel Alteration		18
Channel Sinuosity		8
Bank Stability - Left Bank		9
Right Bank		9
Vegetative Protection - Left	Bank	7
Righ	t Bank	7
Riparian Vegetative Zone W	/idth - Left Bank	4
	Right Bank	2
	RBP Score	104
DDD M	arrative Ratino	Partially Supporting

Impervious Area (acres) 51.34	% Impervious 40.58		
Land Use	Acres	% Area	
Residential	79.68	62.98	
Commercial	16.55	13.08	
Transportation	9.04	7.15	
Woods	12.14	9.60	
Open Space	9.10	7.19	
Lower of the second			

Site ID PT5-931-T-2009

Sampling Date 4/21/2009 ADC Map # 3, B-13 Watershed = Patapsco Tidal Subwatershed = Furnace Creek Location = East of Glen Haven Memorial Gardens

Upstream from Mid-Point

Downstream from Mid-Point

This site, located in Furnace Creek in the Patapsco Tidal watershed, has more than 50% impervious catchment area. With 62% residential and 21% commercial landuse, this high percentage of impervious surface is not unusual. This site is just east of the Glen Haven Memorial Gardens. The field crew found in situ water quality parameters to be within acceptable ranges. A minor buffer break (ATV path) was present along the left bank of the stream. Some bank erosion was noted at this site, and approximately 75% of the substrate was embedded. Epifaunal substrate and instream habitat were poor to marginal, and large amounts of trash were found at the site. The PHI rated this site as Degraded, with a score of 60.5, while the RBP habitat assessment was 113. Partially Supporting. A low community diversity was found through benthic sampling (nine taxa), and only one EPT taxon was found. In addition, no benthos considered intolerant to urban conditions were present in the benthic sample. Overall, the BIBI rated this site as Very Poor, with a score of 1.29, the lowest score of all sites sampled in this survey.

Results	Biological Condition : Habitat Rating :		artially Supporting	MPHI : Degr	raded	
Stream Sul	bsystem = Perennial		Stream Origin = S	pring-fed	Stream Type = Warm	water
Proportion	of the Stream that is :		34 33	No Evide	nce of Local Watershed NPS Moderate Local Watershed	Contraction of the
a characteria a c	of the Stream with Aquation	Vegetation			Road Culvert Present ? Left Buffer Breaks Present ?	
Bedrock	Inorganic Substrate Co 0 Cobble 0 Sa 0 Gravel 20 Sill Classing	nd 80 t 0			Right Buffer Breaks Present ? el Straightening or Dredging ?	No
Water Cher	mistry Temper	ature (C)	18.4 Conductivi	ity (mS/cm) 0.497	7 pH 7.04 DO (ppm)	11.6

Site ID PT5-931-T-2009

Biological Benthic Condition

Metrics	Value	Scores
Total Taxa	9	1
EPT Taxa	1	Ť
% Intolerant to Urban	0.00	1
# Ephemeroptera	0	1
% Ephemeroptera	0.00	1
# Scraper	0	1
% Climbers	2.80	3
BIBI Score: 1.29 R	ating: Ve	ery Poor

Taxa List

Taxa		Count
Cricotopus		65
Gammarus		3
Hydropsyche		1
Limnodrilus		7
Naididae (Tubific	inae)	2
Nais		27
Orthocladius		4
Polypedilum		3
Smittia		1
	Total Count	107

Physical Habitat

9
6
7
8
8
18
12
6
4
9
.9
ink 8
ank 9
ore 113
ng: Partially Supporting

Impervious Area (acres) 311.21	% Impervious 50.86		
Land Use	Acres % Ar	ea	
Residential	380.74 62.2	22	
Commercial	131.76 21.5	53	
Transportation	34.89 5.7	0	
Woods	19.36 3.1	6	
Open Space	45.19 7.3	8	

Site ID PT6-943-T-2009

Sampling Date 4/20/2009 ADC Map # 3, K-9 Watershed = Patapsco Tidal Subwatershed = Curtis Creek Location = Fort Smallwood Road, behind Jet Blast Companies

Upstream from Mid-Point

Downstream from Mid-Point

This Curtis Creek site is off of Fort Smallwood Road, north of Pillman Road and behind Jet Blast Companies. It is part of the Patapsco Tidal watershed. Wooded areas dominate the landuse of the catchment (57%) with 15% residential and 14% industrial landuses also present. Impervious surfaces account for 23.7% of the catchment area. Sediment fences adjacent to the site were failing at the time of sampling. Channel substrate was composed primarily of sand (80%) with some silt (20%), and most of the sampling reach was long sandy run. Substrate was 100% embedded and the canopy was only 25% shaded. All water quality parameters were within acceptable ranges. The RBP rated this site as Supporting, with a total score of 130. Under the PHI, this site rated Partially Degraded, with a total score of 70.7. No EPT taxa were present in the benthic sample obtained at this site and only 8% of the macroinvertebrates obtained were considered intolerant to urban conditions. Overall, the BIBI rated this site as Poor, with a score of 2.14. Water level was somewhat elevated at time of sampling (it was raining during sampling and had rained within the 24 hours prior to sampling), but site was sampled that day due to limited sampling window.

Results	Biological Con Habitat Rating		Supportin	g MPH	: Partially	Degr	aded		
Stream Sut	system = Perenr	nial	Stream	m Origin = Swamp and B	og	S	tream Ty	ype = Warmv	vater
	of the Stream that f the Stream with <i>i</i>	Runs Pools	95 0	N	o Evidence	N	lone Loc	ershed NPS F al Watershed ert Present ?	Erosion
	Inorganic Substr Cobble 0 Gravel 0	ate Componen Sand 8 Silt 2	-	Evidence of	Righ	t Buf	fer Brea	ks Present ? ks Present ? or Dredging ?	No
Water Cher	nistry T	emperature (C)	10.9	Conductivity (mS/cm)	0.183	рН	7.91	DO (ppm)	8

Site ID PT6-943-T-2009

Biological Benthic Co	ondition		
Metrics	Value	Scores	
Total Taxa	29	5	
EPT Taxa	0	1	
% Intolerant to Urban	8.33	1	
# Ephemeroptera	0	1	
% Ephemeroptera	0.00	1	
# Scraper	1	3	
% Climbers	4.63	3	

BIBI Score: 2.14 Rating: Poor

Taxa List

Taxa	Count
Caecidotea	6
Chaetocladius	11
Copelatus	1
Crambidae	2
Curculionidae	1
Cymbiodyta	1
Dolichopodidae	1
Eclipidrilus	1
Enchytraeidae	3
Erioptera	1
Eukiefferiella	1
Hydrobaenus	2
Limnodrilus	1
Lumbricidae	3
Megascolecidae	t.
Molophilus	2
Naididae (Tubificinae)	8
Nais	38
Paraphaenocladius	1
Phaenopsectra	1
Polypedilum	3
Rheocricotopus	9
Rhyacodrilus	1
Silvius	1
Slavina	1
Somatochlora	1
Sphaeriidae	3
Synurella	2
Tipulidae	1
Total Count	108

Physical Habitat

Maryland Biological Strea	m Survey PHI	
Drainage Area (acres)	174.18	
Remoteness	38.62	
Percent Shading	26.57	
Epifaunal Substrate	74.88	
Instream Habitat	94.46	
Instream Woody Debris	89.92	
Bank Stability	100.00	
PHI Score	70.74	
PHI Narrative Rating:	Partially Degrad	led
EPA Rapid Bioassessmer	nt	
Epifaunal Substrate / Availa	ble Cover	12
Pool Substrate Characteriza	ation	10
Pool Variability		10
Sediment Deposition		13
Channel Flow Status		14
Channel Alteration		13
Channel Sinuosity		11
Bank Stability - Left Bank		8
Right Bank		8
Vegetative Protection - Left	Bank	9
Rigi	nt Bank	9
Riparian Vegetative Zone V	Vidth - Left Bank	5
and the second second	Right Bank	8
	RBP Score	130
RBP	arrative Rating:	Supporting

Impervious Area (acres) 41.20	% Impe	ervious 23.65
Land Use	Acres	% Area
Residential	26.93	15.46
Commercial	9.49	5.45
Industrial	24.34	13.98
Transportation	7.71	4.43
Woods	99.52	57.14
Open Space	6.18	3.55
The second secon		

Site ID PT6-945-T-2009

Sampling Date 4/29/2009 ADC Map # 3,J-10 Watershed = Patapsco Tidal Subwatershed = Curtis Creek Location = Behind Madison Warehouse property, off of Carbide Road

Upstream from Mid-Point

Downstream from Mid-Point

This Patapsco Tidal site is located in the Curtis Creek subwatershed, in the southwest corner of the Madison Warehouse property, just off of Carbide Road. The dominant landuse near this site is wooded (65%), with some industrial and some transportation landuse. There is no residential landuse in the surrounding catchment. Twenty-two percent of the catchment area is impervious. Channel substrate was 75% sand and 25% silt. Instream habitat, epifaunal substrate, and pool substrate variability rated in the poor to marginal range and sediment deposition levels were also marginal. Channel flow status was also marginal, due to sediment deposition. This site received a Partially Supporting rating under the RBP habitat assessment (score of 117), and a Minimally Degraded rating under the PHI. A large variety of macroinvertebrate taxa were obtained through benthic sampling (n=26), with only two EPT taxa present in the sample. The overall BIBI score was 2.71, Poor.

Results		cal Conditio	n : Poor RBP	: Parti	ally Supporting	MPHI	: Minima	ally De	graded		
Stream Si	ubsystem =	Perennial		5	Stream Origin =	Spring-fed		S	tream Ty	ype = Warmw	vater
Proportion	n of the Strea	am that is :	Riffl Run Poo	s 25]	N	o Evidenc			ershed NPS F al Watershed	
Proportion	of the Strea	m with Aqu	atic Veget	ation	0			Ro	ad Culve	ert Present ?	No
Percent c	of Inorganic	Substrate	Compon	ents			L	eft But	fer Brea	ks Present ?	No
Bedrock	0 Cobbl	le 0	Sand	75		- 1 1 1 1 1 1 1 1.				ks Present ?	
Boulder	0 Grave	el O	Silt Clay	25 0		Evidence of	Channel	Straig	htening o	or Dredging ?	No
Water Che	emistry	Tem	perature (C) 14	.7 Conducti	vity (mS/cm)	0.219	pH	8.14	DO (ppm)	9.5

Appendix A

Site ID PT6-945-T-2009 Biological Benthic Condition

Metrics	Value	Scores
Total Taxa	26	5
ЕРТ Таха	2	3
% Intolerant to Urban	13.48	3
# Ephemeroptera	0	1
% Ephemeroptera	0.00	1
# Scraper	1	3
% Climbers	2.25	3
BIBI Score: 2.71 R	ating: P	oor

Taxa List

Taxa	Count
Agabus	1
Caecidotea	3
Chironomini	2
Chironomus	4
Cordulegaster	1
Crambidae	2
Culicoides	1
Diplocladius	13
Eclipidrilus	1
Enchytraeidae	5
Erioptera	4
Gammarus	1
Heterotrissocladius	6
Hydrobaenus	2
Ironoquia	1
Limnophyes	1
Lirceus	9
Meropelopia	1
Naididae (Tubificinae)	8
Pisidium	- 1
Pristina	6
Prostoma	1
Pseudorthocladius	1
Shipsa	2
Sphaenidae	10
Tipula	2
Total (Count 89

Physical Habitat

Maryland Biological Stream	m Survey PHI	
Drainage Area (acres)	13.83	
Remoteness	42.78	
Percent Shading	100.00	
Epifaunal Substrate	68.14	
Instream Habitat	98.19	
Instream Woody Debris	100.00	
Bank Stability	95.75	
PHI Score	84.14	
PHI Narrative Rating:	Minimally Degra	ided
EPA Rapid Bioassessmen	t	
Epifaunal Substrate / Availal	ble Cover	6
Pool Substrate Characteriza	tion	8
Pool Variability		5
Sediment Deposition		10
Channel Flow Status		10
Channel Alteration		18
Channel Sinuosity		8
Bank Stability - Left Bank		7
Right Bank		9
Vegetative Protection - Left	Bank	9
Righ	t Bank	9
Riparian Vegetative Zone W	idth - Left Bank	9
	Right Bank	9
	RBP Score	117
RBP N	arrative Rating:	Partially Supporting
and the second		
Land Use Analysis		

Land Use	Acres	% Area
Industrial	2.92	21.13
Transportation	1.99	14.40
Woods	8.92	64.46

Site ID PT7-932-T-2009

Sampling Date 4/17/2009 ADC Map # 2, K-13 Watershed = Patapsco Tidal Subwatershed = Sawmill Creek 1 Location = Virginia Avenue and Maple Lane

Upstream from Mid-Point

Downstream from Mid-Point

A wide variety of landuses are present in the catchment surrounding this site, which is located in Sawmill Creek 1 in the Patapsco Tidal watershed. The site can be accessed at the intersection of Virginia Avenue and Maple Lane. No one landuse is particularly dominant, but wooded areas, open space, and residential landuse all contribute between 22 and 27%. Airport land is nearly 10% of the catchment area, and smaller amounts of transportation and industrial lands are present as well. Just under 30% of the catchment is made up of impervious surface. All in situ water quality parameters fell within acceptable limits according to Maryland water quality standards. Streambanks at this site were not eroded, and instream habitat was good. Channel substrate was a mix of sand and silt, and 85% of the reach length was made up of runs, with the remaining 15% riffles This site received the highest RBP habitat assessment score of all sites included in the study (169, Comparable to Reference). However, under the PHI, this site was rated Degraded with a score of 61.1. One factor negatively affecting the PHI was the paltry 5% canopy shading present at the site. The benthic community at this site was not very diverse (only 9 kinds of taxa were found in the benthic sample), and no EPT nor scraper taxa were included in the sample. In addition none of the benthic macroinvertebrates were considered intolerant of urban conditions. Thus, the BIBI rating for this site was Very Poor, with a score of 1.29.

Results		cal Conditio						100			
	Habitat	Rating :	RBP :	Compar	able to Reference	MPHI	: Degrad	ded			
Stream Su	bsystem =	Perennial		Stre	am Origin = Swamp	o and Bo	g	St	ream T	ype = Warmw	vater
Proportion	of the Strea	am that is :	Riffles	15		No	o Evidenc	e of Lo	cal Wa	tershed NPS F	Pollution
			Runs	85				N	one Loc	al Watershed	Erosion
			Pools	0							
Proportion of	of the Strea	m with Aqu	atic Vegetati	on 20				Roa	ad Culve	ert Present ?	No
Percent of	Inorganic	Substrate	Componen	ts			L.	eft Buf	fer Brea	ks Present ?	No
Bedrock	0 Cobb		and been a set of the second	0			Rig	ght Buf	fer Brea	ks Present ?	No
Boulder	0 Grave	0	Silt 5	0	Evid	lence of	Channel	Straigh	ntening	or Dredging ?	No
			Clay	0							
Water Chemistry Temperature				16.5	Conductivity (m	S/cm)	0.281	рн	6.8	DO (ppm)	10.3

Site ID PT7-932-T-2009

Biological Benthic Condition

Metrics	Value	Scores
Total Taxa	9	1
EPT Taxa	0	1
% Intolerant to Urban	0.00	1
# Ephemeroptera	0	1
% Ephemeroptera	0.00	1
# Scraper	0	1
% Climbers	1.79	3
BIBI Score: 1.29 Ra	ating: Ve	ery Poor

Taxa List

Taxa	Count
Aulodrilus	8
Gammarus	37
Limnodrilus	5
Naididae (Tubificinae)	46
Nais	10
Polypedilum	2
Slavina	1
Sphaeriidae	2
Tvetenia	1
Total Count	112

Physical Habitat

nysical nabitat		
Maryland Biological Strea	m Survey PHI	
Drainage Area (acres)	4206.01	
Remoteness	31.22	
Percent Shading	0.00	
Epifaunal Substrate	77.37	
Instream Habitat	95.16	
Instream Woody Debris	62.74	
Bank Stability	100.00	
PHI Score	61.08	
PHI Narrative Rating:	Degraded	
EPA Rapid Bioassessmen	t	
Epifaunal Substrate / Availa	ble Cover	13
Pool Substrate Characteriza	ation	15
Pool Variability		14 -
Sediment Deposition		19
Channel Flow Status		18
Channel Alteration		19
Channel Sinuosity		13
Bank Stability - Left Bank		10
Right Bank		10
Vegetative Protection - Left	Bank	9
Righ	it Bank	9
Riparian Vegetative Zone W	/idth - Left Bank	10
	Right Bank	10
	RBP Score	169
RBP N	larrative Rating:	Comparable to Referen

Land Use Analysis

-2	and Use Analysis		
	Impervious Area (acres) 1261.28	% Impe	rvious 29.99
	Land Use	Acres	% Area
	Residential	990.92	23.56
	Commercial	175.06	4.16
	Industrial	271.50	6.46
	Utility	21.16	0.50
	Transportation	227.12	5.40
	Airport	402,25	9.56
	Row Crops	5.26	0.13
	Woods	1146.70	27.26

959.14

6.88

22.80

0.16

Appendix A

Water

Open Space

Site ID PT7-934-T-2009

Sampling Date 4/17/2009 ADC Map # 2, J-13 Watershed = Patapsco Tidal Subwatershed = Sawmill Creek 1 Location = Longwood Avenue, between Hopkins Street and Idlewood Street

Upstream from Mid-Point

Downstream from Mid-Point

This site is located in Sawmill Creek 1 in the Patapsco Tidal watershed. It is on the south side of Longwood Avenue, between Hopkins and Idlewood Streets. Thirty-two percent of the landuse surrounding this site is related to the BWI airport, and 51% of the catchment acreage is impervious. In situ water quality parameters were all within acceptable ranges. Despite its close proximity to the BWI airport, the benthic macroinvertebrate community at this site scored in the Fair range, with a BIBI of 3.00. Twenty-two different taxa were found, including three EPT taxa and two scrapers. However, only 2% of the sample consisted of macroinvertebrates considered intolerant of urban conditions. According to the landowner, the county had done dredging work there approximately ten years ago and installed chainlink fence and chicken wire throughout the site. An old metal fence is embedded into the streambed along almost the entire length of reach, which made benthic sampling somewhat difficult. Streambanks along both sides of the stream had minimal levels of erosion and only 25% of the canopy was shaded. Epifaunal substrate and pool substrate variability were rated in the lower end of Suboptimal, and sediment deposition was marginal. Along the left bank of the stream, the riparian zone was rated Poor. The total RBP score was 117 (Partially Supporting) while the PHI rating was Degraded (score of 64.9).

Results		al Condition Rating :		Partially	Supporting	MPHI	: Degrad	ded			
Stream Sul	osystem =	Perennial	14 M	Strea	am Origin = Mi	xture of Orig	jins	S	tream T	ype = Warmw	vater
Proportion			Riffles Runs Pools	0		N	o Evideno	N	lone Loc	tershed NPS F al Watershed	Erosion
THE REAL PROPERTY.		m with Aquat		-	_		1.7		and the second second	srt Present ? ks Present ?	No No
Bedrock Boulder	0 Cobble 0 Grave	10 Si	and	90 0 0		Evidence of	Rig	ght Bul	lfer Brea	ks Present ? or Dredging ?	No
Water Cher	nistry	Tempe	erature (C	14.5	Conductivit	y (mS/cm)	0.189	pН	7,03	DO (ppm)	10,1

Site ID PT7-934-T-2009

Biological Benthic Condition

Metrics	Value	Scores	
Total Taxa	22	5	
EPT Taxa	3	3	
% Intolerant to Urban	1.96	1	
# Ephemeroptera	0	1	
% Ephemeroptera	0.00	1	
# Scraper	2	5	
% Climbers	10.78	5	

BIBI Score: 3.00 Rating: Fair

Taxa	Count
Amphinemura	1
Aulodrilus	2
Brillia	3
Cheumatopsyche	1
Cricotopus	2
Cryptochironomus	2
Enchytraeidae	4
Eukiefferiella	23
Gammarus	32
Limnodrilus	5
Lymnaea	1
Macronychus	7
Naididae (Tubificinae)	5
Natarsia	1
Orthocladius	3
Paratendipes	1
Polypedilum	9
Prostoma	1
Rhyacophila	97
Stenochironomus	2
Tanytarsus	1
Tipulidae	
Total Count	102

Physical Habitat

Maryland Biological Stream	n Survey PHI		
Drainage Area (acres)	880.52		
Remoteness	36.34		
Percent Shading	26.57		
Epifaunal Substrate	75.94		
Instream Habitat	77.88		
nstream Woody Debris	77.49		
Bank Stability	95.40		
PHI Score	64.94		
PHI Narrative Rating:	Degraded		
EPA Rapid Bioassessment			
Epifaunal Substrate / Availab	le Cover	11	
Pool Substrate Characterizat	ion	11	
Pool Variability		10	
Sediment Deposition		8	
Channel Flow Status		18	
Channel Alteration		15	
Channel Sinuosity		7	
Bank Stability - Left Bank		8	
Right Bank		8	
Vegetative Protection - Left F	Rank	E	

Vegetative Protection - Left Bank	6
Right Bank	6
Riparian Vegetative Zone Width - Left Bank	1
Right Bank	8
RBP Score	117
All the second sec	

RBP Narrative Rating: Partially Supporting

Impervious Area (acres) 445.8	3 % Impe	ervious 50.63
Land Use	Acres	% Area
Residential	132.85	15.09
Commercial	30.06	3.41
Industrial	96.59	10.97
Transportation	28.97	3.29
Airport	284.28	32.29
Woods	74.07	8.41
Open Space	232.25	26.38
Water	1.44	0.16

Site ID PT7-936-T-2009

Sampling Date 4/21/2009 ADC Map # 2, G-13 Watershed = Patapsco Tidal Subwatershed = Sawmill Creek 1 Location = Aviation Boulevard

Upstream from Mid-Point

Downstream from Mid-Point

Near the BWI Airport, this site is located on the east side of Aviation Boulevard where the stream crosses the road. It is in Sawmill Creek 1, in the Patapsco Tidal watershed. Fifty percent of the landuse surrounding this site is related to the BWI airport, and 52% of the catchment acreage is impervious. The close proximity of this site to BWI Airport likely influences the quality of the benthic macroinvertebrate community and the habitat at this site. The benthic community received a BIBI score of 1.86 (Very Poor), as the sample lacked any EPT or scraper taxa and no taxa were considered intolerant to urban conditions. While the water had a distinct reddish/orangish color, all water quality parameters measured by the field crew were within acceptable limits according to state water quality standards. Field crew members noted a moderate amount of trash present at the site. Streambanks had some erosion along both sides of the stream, and bank stability was rated marginal along the left bank. Epifaunal substrate and instream habitat were in the optimal to suboptimal range. Embeddedness was 45% and the canopy was 85% shaded. The total RBP score was 135 (Supporting) while the PHI rating was Partially Degraded (score of 76.7).

Results		al Condition : Rating :		or Supporting	MF	PHI : Partia	lly Degraded		
Stream Subsystem = Perennial			Stream (Drigin = Spring-fed		Stream	Type = Warm	water	
Proportion	of the Strea	m that is :	Riffles Runs Pools	40 35 25		No Eviden		atershed NPS ocal Watershed	
Proportion	of the Stream	n with Aquation	: Vegetatic	on 30			Road Cul	vert Present ?	No
Percent o	f Inorganic	Substrate Co	mponent	s		1	Left Buffer Bre	eaks Present?	No
Bedrock	0 Cobble 5 Grave	e 20 Sa	ind 30 t 0	0	Evidence			eaks Present ? g or Dredging ?	
Water Che	mistry	Tempe	rature (C)	14.4 (Conductivity (mS/cm) 0.169	pH 7.91	DO (ppm)	9.5

Site ID PT7-936-T-2009

Biological Benthic Condition

Metrics	Value	Scores	
Total Taxa	15	3	
EPT Taxa	0	1	
% Intolerant to Urban	0.00	1	
# Ephemeroptera	0	1	
% Ephemeroptera	0.00	1	
# Scraper	0	1	
% Climbers	11.71	5	

BIBI Score: 1.86 Rating: Very Poor

Taxa List

Taxa	Count	
Aulodrilus	4	
Conchapelopia	3	
Corbicula	Ť.	
Cricotopus	1	
Enchytraeidae	7	
Naididae (Tubificinae)	22	
Nais	43	
Nanocladius	1	
Orthocladius	2	
Polypedilum	11	
Pristina	12	
Rheotanytarsus	1 -	
Slavina	5	
Sphaenidae	2	
Tanytarsus	2	
Total Count	111	

Physical Habitat

nyoldal maonat				
Maryland Biological Strea	m Survey PHI			
Drainage Area (acres)	566,97			
Remoteness	38.62			
Percent Shading				
Epifaunal Substrate	100.00			
Instream Habitat	100.00			
Instream Woody Debris	58.81			
Bank Stability	78.00			
PHI Score	76.66			
PHI Narrative Rating:	Partially Degrad	led		
EPA Rapid Bioassessmen	t			
Epifaunal Substrate / Availa	ble Cover	16		
Pool Substrate Characteriza	10			
Pool Variability	12			
Sediment Deposition		13		
Channel Flow Status		13		
Channel Alteration		18		
Channel Sinuosity		13		
Bank Stability - Left Bank		4		
Right Bank		6		
Vegetative Protection - Left	Bank	8		
Righ	t Bank	8		
Riparian Vegetative Zone W	9			
	5			
	RBP Score	135		
RBP N	arrative Rating:	Supporting		
Land Use Analysis				

Impervious Area (acres) 293.30 % Impervious 51.73 Land Use % Area Acres Residential 12.98 2.29 Commercial 15.08 2.66 Industrial 13.79 2.43 11.72 Transportation 2.07 Airport 284.28 50.14 Woods 36.72 6.48 Open Space 190.95 33.68 Water 1.44 0.25

Site ID PT7-938-T-2009

Sampling Date 4/21/2009 ADC Map # 3, A-12 Watershed = Patapsco Tidal Subwatershed = Sawmill Creek 1 Location = Behind GMC Trucks property on Crain Highway

Upstream from Mid-Point

Downstream from Mid-Point

This site is located behind the GMC Trucks property off of Crain Highway. It is in Sawmill Creek 1 in the Patapsco Tidal watershed. Residential landuse makes up the greatest percentage of landuse in the catchment at 31%, while wooded and open space landuse account for 24 and 19%, respectively. Impervious surface makes up 32.3% of the catchment area. Epifaunal substrate and instream habitat were rated in the suboptimal range at this site, and embeddedness was 50%. The field crew noted a moderate amount of trash nearby, and the left bank lacked adequate vegetative protection along with a narrow riparian vegetative zone. Moderate levels of erosion were noted in the local watershed. Overall, the site received a narrative rating of Partially Degraded under the PHI (score of 70.6) and rated Supporting under the RBP (score of 143, 71.5% comparable to reference). While a good diversity of taxa were found through benthic macroinvertebrate sampling (n=26), no EPT taxa were present in the sample and only 7.5% of the macroinvertebrates were considered intolerant of urban conditions. A healthy number of scrapers were present, along with some climbers, resulting in a Poor classification by the BIBI (score of 2.43). Some SAV was present.

Results	Biological Habitat Ra	Condition : ating :		Supportin	g MPH	II: Partial	ly Degr	raded		
Stream Subsystem = Perennial			-	Strea	m Origin = Spring-fed	-	S	tream T	ype = Warmv	vater
	of the Stream		Riffles Runs Pools	45 10	No Evidence of Local Watershed NPS Po Moderate Local Watershed E Boad Culvert Present ?			Erosion		
	Inorganic Su				_	L			ks Present ?	
Bedrock	0 Cobble 0 Gravel	0 Sau 50 Silt Cla	nd 5	0	Right Buffer Breaks Present ? No Evidence of Channel Straightening or Dredging ? No					
Water Cher	nistry	Temper	ature (C)	16.2	Conductivity (mS/cm)	0.199	pН	7.21	DO (ppm)	11.2

Site ID PT7-938-T-2009

Biological Benthic Condition

Metrics	Value	Scores	
Total Taxa	26	5	
EPT Taxa	0	1	
% Intolerant to Urban	7.55	- 1	
# Ephemeroptera	0	1	
% Ephemeroptera	0.00	1	
# Scraper	4	5	
% Climbers	2.83	3	
BIBI Score: 2.43 R	ating: Po	oor	

Taxa List

Taxa	Count
Ancyronyx	Ť
Argia	1
Boyeria	T
Caecidotea	1
Calopteryx	2
Chaetocladius	4
Chaetogaster	+
Corynoneura	2
Cricotopus	10
Gammarus	20
Hyalella	1
Lumbricidae	1
Macronychus	5
Microvelia	1
Naididae (Tubiticinae)	3
Nais	31
Onhocladius	1
Oulimnius	7
Paracladopelma	1
Paralauterborniella	1
Saetheria	1
Slavina	1
Stenelmis	1
Stygobromus	1
Stylaria	1
Tvetenia	9

Physical Habitat

n Survey PHI			
5317.20			
31.22			
73.32			
93.28			
87.21			
48.26			
90.37			
70.61			
Partially Degrad	ed		
	18		
Pool Substrate Characterization			
Pool Variability			
	14		
	16		
	18		
	8		
	8		
	8		
Bank	3		
Bank	8		
idth - Left Bank	3		
Right Bank	9		
RBP Score	143		
arrative Rating	Supporting		
	5317.20 31.22 73.32 93.28 87.21 48.26 90.37 70.61 Partially Degrad tole Cover tion Sank Bank Bank idth - Left Bank Right Bank RBP Score	5317.20 31.22 73.32 93.28 87.21 48.26 90.37 70.61 Partially Degraded toole Cover 18 tion 16 14 14 16 18 8 8 8 8 8 8 8 8 8 8 8 8 8	

Land Use Analysis

Impervious Area (acres) 1720.22 % Impervious 32.35

Land Use	Acres	% Area
Residential	1657.80	31.18
Commercial	284.87	5.36
Industrial	326.33	6.14
Utility	30.22	0.57
Transportation	297.71	5.60
Airport	402.25	7.57
Row Crops	5.26	0.10
Woods	1279.92	24.07
Open Space	1024.72	19.27
Water	8.11	0.15

Site ID PT8-923-T-2009

Sampling Date 4/21/2009 ADC Map # 8, F-4 Watershed = Patapsco Tidal Subwatershed = Marley Creek 1 Location = Marley Neck Boulevard, north of Merct Drive

Upstream from Mid-Point

Downstream from Mid-Point

Residential landuse is the most prevalent landuse in the catchment of site PT8-923-T-2009, accounting for 58% of the catchment area. This site is located in Marley Creek 1, in the Patapsco Tidal watershed. Other landuses present include wooded (24%), commercial (7%), and transportation-related (6%). This site is located on the south side of Marley Neck Boulevard, just north of Merct Drive. Channel substrate consisted of 80% sand and 20% silt, and the stream was 100% embedded. The field crew noted moderate to heavy amounts of trash and some bank erosion. This site had suboptimal epifaunal substrate, while instream habitat, pool substrate, and pool variability rated marginal. Impervious surfaces account for just under 31% of the catchment area. The total RBP Habitat score was 135 (Supporting), while the PHI score of 78.9 rated the site as Partially Degraded. The benthic community at the site showed signs of degradation, with an overall BIBI score of 1.57 (Very Poor). Benthic macroinvertebrate sampling targeted rootwads and woody debris, which accounted for about half of the benthic habitat present at the site. No sensitive EPT taxa were obtained in the benthic sample, nor were there any scrapers. In addition, less than 5% of the macroinvertebrates present in the benthic sample were considered intolerant of urban conditions.

Results	Biological Condition Habitat Rating :	: Very Poo RBP : S		ng MPHI	: Partial	y Degi	aded		
Stream Subsystem = Perennial			Strea	am Origin = Swamp and Bo	g	S	tream Ty	vpe = Warmw	ater
Proportion	of the Stream that is :	Riffles Runs Pools	15 85 0	No Evidence of Local Watershed NPS P None Local Watershed F			Call Act to Lot a		
Proportion of	f the Stream with Aquati	c Vegetatio	0 n			Ro	ad Culve	ert Present ?	No
Percent of Inorganic Substrate Components Bedrock 0 Cobble 0 Sand 80 Boulder 0 Gravel 0 Silt 20 Clay 0			Evidence of	Rig	ght Bul	fer Breal	ks Present ? ks Present ? or Dredging ?	No	
Water Cher	nistry Tempe	rature (C)	13.8	Conductivity (mS/cm)	0.26	рH	6.85	DO (ppm)	9.2

Site ID PT8-923-T-2009

Biological B	enthic Conditi	on
---------------------	----------------	----

Metrics	Value	Scores
Total Taxa	18	З
EPT Taxa	0	1
% Intolerant to Urban	4,35	1
# Ephemeroptera	0	1
% Ephemeroptera	0.00	1
# Scraper	0	1
% Climbers	4.35	3
BIBI Score: 1.57 R	ating: Ve	ery Poor

Taxa List

Taxa		Count
Caecidotea		4
Calopteryx		2
Chaetocladius		13
Cricotopus		3
Cryptochironomu	S	T
Enchytraeidae		4
Erioptera		1
Limnodrilus		3
Lumbricidae		T
Naididae (Tubific	inae)	6
Nais		68
Orthocladiinae		1
Polypedilum		3
Rheocricotopus		з
Simulium		1
Smittia		1
Stenochironomus	3	1
Synurella		1
	Total Count	115

Physical Habitat

Maryland Biological Stre	am Survey PHI	
Drainage Area (acres)	624.98	
Remoteness	38.62	
Percent Shading	78.67	
Epifaunal Substrate	89.80	
Instream Habitat	70.29	
Instream Woody Debris	100.00	
Bank Stability	96.27	
PHI Score	e 78.94	
PHI Narrative Rating	g: Partially Degraded	

EPA Rapid Bioassessment

Epifaunal Substrate / Available Cover	13
Pool Substrate Characterization	10
Pool Variability	9
Sediment Deposition	12
Channel Flow Status	14
Channel Alteration	16
Channel Sinuosity	15
Bank Stability - Left Bank	7
Right Bank	7
Vegetative Protection - Left Bank	7
Right Bank	7
Riparian Vegetative Zone Width - Left Bank	9
Right Bank	9
RBP Score	135
RBP Narrative Rating:	Supporting

Impervious Area (acres) 191.	3 % Impervious 30.58
Land Use	Acres % Area
Residential	364.76 58.36
Commercial	43.60 6.98
Industrial	3.05 0.49
Utility	9.07 1.45
Transportation	40.13 6.42
Woods	153.17 24.51
Open Space	11.20 1.79

Site ID PT8-927-T-2009

Sampling Date 4/22/2009 ADC Map # 8, G-2,3 Watershed = Patapsco Tidal Subwatershed = Marley Creek 1 Location = Marley Neck Road

Upstream from Mid-Point

Downstream from Mid-Point

This site in Marley Creek 1 in the Patapsco Tidal watershed had one of the lowest amounts of impervious surface in its catchment of all sites included in this study (4.6%). Much of the landuse surrounding this site is wooded (73%) or open space (16%), and only small amounts of utility (6%), water (2%), and transportation landuses (1.7%) are present. The site is located off of Marley Neck Road, north of a train and automobile junkyard. This junkyard is located just outside the 50-meter riparian area along the right bank of the stream. The proximity of the site just next to the road, along with the nearness of the junkyard resulted in the lowest ratings possible for remoteness and aesthetics (trash). Despite the low amounts of impervious surface, this site is plagued by terrible bank erosion. The field crew rated the entire 75-meter stretch as having extreme bank erosion along the left bank and moderate bank erosion along the right bank. Overall habitat scores were low at this site, with the RBP habitat assessing the site as Partially Supporting (score of 117), and the PHI rating the site as Degraded (score of 55.4, the lowest PHI score in the study). The benthic community also rated as Very Poor, with a BIBI score of 1.86. Community diversity was lacking, as only 7 taxa were present in the benthic sample.

Results	Biologic Habitat	al Conditio Rating :	1000		Supporting	MPHI	: Degrac	bed			
Stream Sub	system =	Perennial		Stre	eam Origin = Sprin	g-fed	1.1	S	tream T	ype = Warmv	vater
Proportion	of the Stream	m that is :	Riffle Runs Pools	20		No	o Evidenc			ershed NPS I al Watershed	- mention i
Proportion c	I the Stream	n with Aqua	atic Vegeta	ation 0	C 20 (1)			Ro	ad Culve	ert Present ?	No
Percent of	Inorganic S	Substrate	Compone	nts			L	eft Bul	fer Brea	ks Present ?	No
Bedrock Boulder	0 Cobble 0 Gravel	55	Sand Silt Clay	35 10 0	Ev	idence of	1.5.	1.2.1		ks Present ? or Dredging ?	
Water Cher	nistry	Tem	perature (0	2) 10.9	Conductivity (mS/cm)	0.17	pН	8.01	DO (ppm)	11.2

Site ID PT8-927-T-2009

Biologica	Benthic	Condition
-----------	---------	-----------

Metrics	Value	Scores	
Total Taxa	7	1	
EPT Taxa	2	З	
% Intolerant to Urban	4.00	1	
# Ephemeroptera	0	1	
% Ephemeroptera	0.00	1	
# Scraper	0	1	
% Climbers	8.00	5	

BIBI Score: 1.86 Rating: Very Poor

Taxa List

Taxa	Count
Aeshna	1
Chaetocladius	19
Ironoquia	- 1
Lepidostoma	1
Orthocladius	- A.
Simulium	- A
Tipula	1
Total Count	25

Physical Habitat

Maryland Biological Stream	m Survey PHI
Drainage Area (acres)	264.23
Remoteness	3.31
Percent Shading	84.56
Epitaunal Substrate	54.74
Instream Habitat	90.20
Instream Woody Debris	64.49
Bank Stability	35.36
PHI Score	55.44
PHI Narrative Rating:	Degraded

EPA Rapid Bioassessment

Epifaunal Substrate / Available Cover	10
Pool Substrate Characterization	10
Pool Variability	5
Sediment Deposition	14
Channel Flow Status	15
Channel Alteration	17
Channel Sinuosity	11
Bank Stability - Left Bank	2
Right Bank	1
Vegetative Protection - Left Bank	8
Right Bank	6
Riparian Vegetative Zone Width - Left Bank	9
Right Bank	9
RBP Score	117
BBP Narrative Bating	Partially Supportin

RBP Narrative Rating: Partially Supporting

Impervious Area (acres) 12.	12 % Impervious	4.59
Land Use	Acres % Are	a
Residential	0.45 0.17	
Commercial	0.14 0.05	
Industrial	0.22 0.08	
Utility	16.89 6.39	
Transportation	4.58 1.73	
Woods	193.86 73.37	7
Open Space	43.16 16.33	3
Water	4.93 1.87	

Site ID PT8-937-T-2009

Sampling Date 4/21/2009 ADC Map # 8, G-4 Watershed = Patapsco Tidal Subwatershed = Marley Creek 1 Location = Marley Neck Road at Tanyard Cove Road

Upstream from Mid-Point

Downstream from Mid-Point

This Marley Creek 1 site in the Patapsco Tidal watershed is located on a farm off of Marley Neck Road at Tanyard Cove Road. This stream had stable banks with very little erosion present. No trash was observed at the site by field staff. Much of the length of the stream sampled consisted of long sandy run, with few riffles or pools. Epifaunal substrate and pool substrate were both rated toward the lower end of suboptimal, with most of the channel substrate composed of sand (80%) and some silt (20%). Overall, this site rated as Supporting under the RBP (score of 150, 75% comparable to reference), and as Partially Degraded under the PHI (score of 75.8). The benthic community present at this site received one of the higher BIBI scores of all sites included in this study (BIBI = 3.57, Fair), and had a high amount of diversity (35 taxa present, including 5 EPT taxa). In situ pH levels at this site were 6.33, slightly below the minimum state water quality standard of 6.5.

Results	Biological (Habitat Ra	Condition : ting :		Supportin	ng MPHI	I: Partial	ly Deg	raded		
Stream Subsystem = Perennial				Strea	am Origin = Swamp and B	og	S	tream T	ype = Warmv	vater
Proportion of the Stream that is : Riffles Runs Pools			20 75 5	N	o Evidenc	Carlor Contractor	Colden la la cola	tershed NPS I al Watershed	Construction of the second	
Proportion o	f the Stream w	with Aquatic	Vegetati	on 0			Ro	ad Culve	ert Present ?	No
Percent of	Inorganic Sul	bstrate Co	mponen	s	2	્ય	eft Bul	fer Brea	ks Present ?	No
Bedrock (Boulder (0 Cobble 0 Gravel	0 Sar 0 Silt Cla	2	0	Evidence of				ks Present ? or Dredging ?	
Water Chen	nistry	Temper	ature (C)	15	Conductivity (mS/cm)	0.122	pH	6.33	DO (ppm)	8

Site ID PT8-937-T-2009

Biological	Benthic	Condition
------------	---------	-----------

Metrics	Value	Scores	
Total Taxa	35	5	
EPT Taxa	5	5	
% Intolerant to Urban	50.00	5	
# Ephemeroptera	0	1	
% Ephemeroptera	0.00	1	
# Scraper	1	3	
% Climbers	18.03	5	

BIBI Score: 3.57 Rating: Fair

Taxa List

Taxa	Count
Apsectrotanypus	1
Caecidotea	1
Chaetocladius	1
Corynoneura	1
Culicoides	1
Diplectrona	3
Heferotrissocladius	1
Leuctra	17
Limnophyes	2
Lype	2
Mallochohelea	1
Meropelopia	9
Micropsectra	17
Nais	2
Natarsia	1
Nigronia	4
Orthocladiinae	1
Paracladopelma	1
Parametriocnemus	6
Phaenopsectra	1
Pisidium	3
Polycentropus	6
Polypedilum	1
Pseudolimnophila	2
Ptychoptera	2
Pycnopsyche	7
Rheocricotopus	2
Sialis	2
Simulium	5
Synurella	8
Tanytarsus	4
Thienemannimyia group	9
Tipula	1-
Tribelos	2
Zavrelimyia	1
Total Count	122

Physical Habitat

Physical Habitat			
Maryland Biological Stream	m Survey Pl	HI	
Drainage Area (acres)	304.69		
Remoteness	31.22		
Percent Shading	73,32		
Epifaunal Substrate	82,86		
Instream Habitat	77.64		
Instream Woody Debris	89.50		
Bank Stability	100.00		
PHI Score	75,76		
PHI Narrative Rating:	Partially Dep	graded	
EPA Rapid Bioassessment	t		
Epifaunal Substrate / Availat	ole Cover	11	
Pool Substrate Characteriza	tion	13	
Pool Variability		10	
Sediment Deposition		16	
Channel Flow Status		18	
Channel Alteration		18	
Channel Sinuosity		12	
Bank Stability - Left Bank		9	
Right Bank		9	
Vegetative Protection - Left	Bank	9	
Right	t Bank	9	
Riparian Vegetative Zone W	idth - Left Ba	ank 7	
	Right B	ank 9	
	RBP Sc	ore 150	
RBP N	arrative Rati	ng: Supporting	
Land Use Analysis			
Impervious Area (acres	s) 11.87	% Impervious	3.90
Land Use	1	Acres % Area	1

				_
ī	Land Use	Acres	% Area	1
	Residential	12,58	4.13	
	Commercial	8.25	2.71	
	Industrial	0.02	0.01	
	Transportation	5.37	1,76	
	Woods	264.37	86.77	
	Open Space	14.10	4.63	ł

Site ID PT9-933-T-2009

Sampling Date 4/20/2009 ADC Map # 4, C-13 Watershed = Patapsco Tidal Subwatershed = Cox Creek Location = Fort Smallwood Drive, north of Chestnut Cover Drive

Upstream from Mid-Point

Downstream from Mid-Point

Located in the Cox Creek subwatershed of the Patapsco Tidal watershed, this site can be accessed off of Fort Smallwood Drive, north of Chestnut Cove Drive. More than half of the landuse near this site is industrial, with woods (17%) and open space (15%) the next most-prevalent landuses. The surrounding catchment is nearly 47% impervious. The site is located in close proximity to the road, and a moderate amount of trash was present at the time of sampling. A storm drain along the left bank of the stream was present and served as a minor buffer break. Channel substrate was highly embedded and instream habitat, epifaunal substrate, and pool substrate rated in the marginal to suboptimal range. Stream banks were stable with no erosion, while the riparlan vegetative width rated at the low end of suboptimal. Under the RBP Habitat Assessment, this site rated Supporting with a total score of 137 (68.5% comparable to reference conditions). Under the PHI, this site received a score of 80,9 (Partially Degraded). A good biological community diversity was present at this site (n=26 taxa), but only one EPT taxa was present and 99% of the benthic sample consisted of macroinvertebrates tolerant of urban conditions. A healthy amount of scraper taxa and climbers were present in the benthic sample, resulting in an overall BIBI score of 2.71, a rating of Poor. Sampling was conducted when water level was slightly elevated (rainy conditions) because of limited sampling window.

Results		cal Condition taken to the tensor of tensor	on : Poc RBI		upportin	ng MPI	H: Partial	ly Deg	raded		
Stream Sub	system =	Perennial	1 - 1		Strea	m Origin = Mixture of O	igins	S	tream T	ype = Warmv	vater
Proportion (of the Stre	am that is :	Ru	fles ns ols	20 80 0		No Eviden			tershed NPS I al Watershed	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Proportion o	f the Strea	m with Aqu	atic Vege	etation	0 1			Ro	ad Culve	ert Present ?	No
Percent of	Inorganic	Substrate	Compo	nents			1	eft But	ffer Brea	ks Present ?	Yes
Bedrock	Cobb Grave	le O	Sand Silt Clay	60 40 0	-	Evidence				ks Present ? or Dredging ?	No No
Water Cher	nistry	Tem	perature	(C)	11.8	Conductivity (mS/cm)	0.302	рH	7.1	DO (ppm)	8

Appendix A

Site ID PT9-933-T-2009

Biological Benthic Condition

Metrics	Value	Scores
Total Taxa	26	5
EPT Taxa	1	1
% Intolerant to Urban	1.11	1
# Ephemeroptera	0	1
% Ephemeroptera	0.00	1
# Scraper	4	5
% Climbers	18.89	5
BIBI Score: 2.71 R	ating: Po	or

Taxa List

Taxa	Count	
Aulodrilus	4	
Calopteryx	1	
Chaetocladius	14	
Cheumatopsyche	2	
Cricotopus	13	
Cryptochironomus	2	
Culicoides	1	
Dubiraphia	2	
Enchytraeidae	2	
Gammarus	11	
Limnophyes	4	
Lymnaea	1	
Megascolecidae	1	
Menetus	τ.	
Meropelopia	1	
Micropsectra	T	
Naididae (Tubificinae)	4	
Orimarga	1	
Orthocladius	2	
Paratanytarsus	1	
Polypedilum	13	
Slavina	1	
Smittia	2	
Stenelmis	1	
Stenochironomus	3	
Tvetenia	1	
Total Count	90	

Physical Habitat

Maryland Biological Strea	m Survey PHI	
Drainage Area (acres)	170.91	
Remoteness	24.93	
Percent Shading	78.67	
Epifaunal Substrate	98.24	
Instream Habitat	83.56	
Instream Woody Debris	100.00	
Bank Stability	100.00	
PHI Score	80.90	
PHI Narrative Rating:	Partially Degraded	

EPA Rapid Bioassessment

The restance of the second sec		
Epifaunal Substrate / Available Cover	13	
Pool Substrate Characterization	14	
Pool Variability	7	
Sediment Deposition	11	
Channel Flow Status	18	
Channel Alteration	16	
Channel Sinuosity	14	
Bank Stability - Left Bank	9	
Right Bank	9	
Vegetative Protection - Left Bank	7	
Right Bank	7	
Riparian Vegetative Zone Width - Left Bank	6	
Right Bank	6	
RBP Score	137	
RBP Narrative Rating:	Supporting	

Impervious Area (acres) 79.70	% Impe	ervious 46.63
Land Use	Acres	% Area
Residential	1.08	0.63
Commercial	4.94	2.89
Industrial	92.13	53.90
Utility	5.79	3.39
Transportation	8.46	4.95
Woods	29.87	17.48
Open Space	26.33	15.41
Water	2.32	1.36

Site ID PT9-935-T-2009

Sampling Date 4/20/2009 ADC Map # 4, C-13 Watershed = Patapsco Tidal Subwatershed = Cox Creek Location = Wagner Station Road, southwest side treatment plant.

Upstream from Mid-Point

Downstream from Mid-Point

Wooded and industrial landuses each account for approximately one-third of the landuse surrounding site PT9-935-T-2009. No residential landuse is present, and 29% of the catchment of this Cox Creek subwatershed site is impervious. This site is located along the southwestern side of the Cox Creek wastewater treatment plant, just off of Wagner Station Road in the Patapsco Tidal watershed. Some trash was present at the site, as well as an odor of sewage likely resulting from the nearby treatment plant. Benthic community diversity was good, with 36 different taxa present in the benthic sample obtained here. A healthy number of climbers were present, but only two EPT taxa and one scraper taxa were present, resulting in a BIBI score of 2.71, Poor. Habitat conditions assessed under the RBP mainly rated in the suboptimal range, with stable banks with little to no erosion noted. The total RBP habitat score was 152, Comparable to Reference. The PHI also rated habitat conditions well, with a total score of 87, Minimally Degraded.

Results	Biologic	al Conditi	on : Poor								
	Habitat	Rating :	RBP	: Compa	rable to Reference	MPH	I: Minima	ally De	graded		
Stream Sut	osystem =	Perennia	6	Str	eam Origin = Mixtur	e of Orig	gins	S	tream T	ype = Warmv	vater
Proportion	of the Strea	m that is	Riffle	es 50	1	N	a Evidenc	e of Lo	ocal Wa	tershed NPS I	Pollution
a Citrada a			Run Pool	-				N	lone Loo	al Watershed	Erosion
Proportion o	f the Stream	m with Aq	uatic Veget	ation				Ro	ad Culve	ert Present ?	No
Percent of	Inorganic	Substrate	Compon	ents			L.	eft Buf	fer Brea	ks Present ?	No
Bedrock	0 Cobbl	e 0	Sand	75			Rig	ght Bul	fer Brea	ks Present ?	No
Boulder	0 Grave	1 0	Silt Clay	25 0	Evic	dence of	f Channel	Straig	htening	or Dredging ?	No
Water Cher	nistry	Ter	nperature (_	Conductivity (m	S/cm)	0.567	pH	7.2	DO (ppm)	9

Site ID PT9-935-T-2009

Biological Benthic Condition

Metrics	Value	Scores
Total Taxa	36	5
EPT Taxa	2	3
% Intolerant to Urban	8.26	1
# Ephemeroptera	0	1
% Ephemeroptera	0.00	1
# Scraper	1	3
% Climbers	9.17	5
BIBI Score: 2.71 R	ating: Po	oor

Taxa List

Taxa	Count
Aulodrilus	4
Caecidotea	1
Chironomus	- t
Cryptochironomus	3
Culicoides	
Diplectrona	1
Diplocladius	1
Dolichopodidae	4
Gammarus	37
Gonomyia	1
Gymnometriocnemus	1
Haliplus	1
Hemerodromia	1
Hesperocorixa	1
Hydropsyche	1
Limnodrilus	1
Limnophyes	
Lumbricidae	6
Meropelopia	10
Molophilus	1
Naididae (Tubificinae)	4
Nais	2
Neumania	4
Orthocladius	2
Paracladopelma	2
Paraphaenocladius	2
Paratendipes	1
Polypedilum	8
Prodiamesa	2
Pseudorthocladius	3
Rheotanytarsus	1
Stenelmis	2
Stenochironomus	1
Synurella	7
Tanytarsus	1
Zavrelimyia	1.
Total Count	109

Physical Habitat

'nysical Habitat	3			
Maryland Biological Stream	n Survey	PHI		
Drainage Area (acres)	131.76			
Remoteness	51.66			
Percent Shading	73.32			
Epifaunal Substrate	99.94			
Instream Habitat	97.32			
Instream Woody Debris	100.00			
Bank Stability	100.00			
PHI Score	87.04			
PHI Narrative Rating:	Minimally	Degradeo	ł.	
EPA Rapid Bioassessment	: :			
Epifaunal Substrate / Availab	ole Cover		13	
Pool Substrate Characterizat	tion		12	
Pool Variability			13	
Sediment Deposition			16	
Channel Flow Status			16	
Channel Alteration			15	
Channel Sinuosity			15	
Bank Stability - Left Bank			9	
Right Bank			9	
Vegetative Protection - Left E	Bank		8	
Right	Bank		9	
Riparian Vegetative Zone W	idth - Left	Bank	10	
	Right	Bank	7	
	RBP S	Score	152	
RBP Na	arrative Ra	ting: Co	mparable	e to Reference
Land Use Analysis				
Impervious Area (acres) 37.68	% Imp	ervious	28.60
Land Use		Acres	% Are	a
Commercial		3.17	2.41	
Industrial		43.38	32.92	
Utility		5.10	3.87	
Transportation		8.43	6.40	
Woods		44.45	33.73	2
Open Space		21.03	15.96	6 - C

6.20

4.70

Water

Site ID PTB-909-T-2009

Sampling Date 4/21/2009 ADC Map # 9, E-7 Watershed = Patapsco Tidal Subwatershed = Rock Creek Location = Tower Bridge Drive and Robin Air Court

Upstream from Mid-Point

Downstream from Mid-Point

This site in the Rock Creek subwatershed of the Patapsco Tidal watershed is surrounded by residential landuse in 64% of its catchment. Wooded landuse accounts for 20% of the catchment, and some commercial (8%) and some transportation-related landuse (4%) is also present. Approximately 30% of the catchment draining to this site is impervious surface. This site is located near the intersection of Tower Bridge Drive and Robin Air Court. A sewage line runs along the stream on the right bank and serves as a severe break in the buffer. Sewage odors were strong and field staff thought that sewage could possibly be draining into the stream. In situ pH was 6.24, slightly below the minimum state water quality standard of 6.5. The biological community at this site rated Poor under the BIBI, with a total score of 2.14. Only one pollution-sensitive EPT taxa was present in the benthic sample, and only one scraper taxa. Seventy-five percent of the benthic macroinvertebrates found at this site were considered tolerant of urban conditions. Severe bank erosion was present along some stretches of both streambanks. Epifaunal substrate rated Marginal, and channel substrate consisted mainly of sand (90%) with some silt, and was almost completely embedded. Deposition was severe with sand 30 to 50 cm deep in some places. These less than ideal habitat conditions resulted in a Partially Degraded rating under the PHI and a Partially Supporting rating under the RBP.

Results		gical Co at Ratir	ondition : ng :		Partially !	Supporting	MPH	II : Partial	y Degi	raded		
Stream S	ubsystem =	Pere	ennial		Strea	m Origin =	Mixture of Or	igins	S	tream Ty	/pe = Warm	water
Proportio	n of the Stro	eam th	at is :	Riffles Runs Pools	30 40 30		Some Poter	ntial Source		1. 2. Mar. 1. 1. 1. 1.	ershed NPS al Watershe	
Proportion	of the Stre	am wit	th Aquation	c Vegetati	on 0	1			Ro	ad Culve	ert Present ?	No
Percent	of Inorgani	c Subs	strate Co	mponen	ts	-		L	eft Buf	fer Brea	ks Present ?	No
Bedrock [Boulder	0 Cob 0 Grav	ble [nd 9 t	0 5)		Evidence		1		ks Present ? or Dredging	
Water Ch	emistry		Temper	rature (C)	16.2	Conduc	tivity (mS/cm)	0.225	pH	6.24	DO (ppm	7.6

Site ID PTB-909-T-2009

Biological Benthic Condition

Metrics	Value	Scores
Total Taxa	20	3
EPT Taxa	1	1
% Intolerant to Urban	23.77	3
# Ephemeroptera	0	1
% Ephemeroptera	0.00	1
# Scraper	1	3
% Climbers	5.74	З
BIBI Score: 2.14 R	ating: Po	oor

Taxa List

1	Taxa		Count	
	Caecidotea		14	
	Calopteryx		5	
	Chaetocladius		4	
	Corduliidae		2	
	Corynoneura		18	
	Eclipidrilus		6	
	Enchytraeidae		1	
	Helichus		2	
	Limnephilidae		2	
	Limnophyes		1	
	Naididae (Tubificinae	e)	3	
	Nais		-38	
	Pristina		1	
	Prostoma		1	
	Rheocricolopus		2	
	Simulium		1	
	Synurella		13	
	Thienemanniella		5	
	Tipula		1	
	Zavrelimyia		2	
	Te	otal Count	122	

Physical Habitat

nysical Habitat	ALC: NO.		
Maryland Biological Stream	m Survey PHI		
Drainage Area (acres)	319.38		
Remoteness	91.57		
Percent Shading	99.94		
Epifaunal Substrate	36.07		
Instream Habitat	77.16		
Instream Woody Debris	100.00		
Bank Stability	70.71		
PHI Score	79.24		
PHI Narrative Rating:	Partially Degrad	ed	
EPA Rapid Bioassessmen	t		
Epifaunal Substrate / Availal	ble Cover	8	
Pool Substrate Characteriza	tion	6	
Pool Variability		7	
Sediment Deposition		2	
Channel Flow Status		11	
Channel Alteration		18	
Channel Sinuosity		15	
Bank Stability - Left Bank		5	
Right Bank		3	
Vegetative Protection - Left	Bank	7	
Righ	t Bank	6	
Riparian Vegetative Zone W	idth - Left Bank	8	
	Right Bank	9	
	RBP Score	105	
RBP N	arrative Rating:	Partially	Supporting

Impervious Area (acres) 95.4	3 % Imperv	vious 29.88
Land Use	Acres	% Area
Residential	205.26	64.27
Commercial	25.75	8.06
Industrial	3.09	0.97
Transportation	12.38	3.88
Woods	64.25	20.12
Open Space	8.66	2.71

Site ID PTB-910-T-2009

Sampling Date 4/21/2009 ADC Map # 9, D-7 Watershed = Patapsco Tidal Subwatershed = Rock Creek Location = Edwin Raynor Boulevard, north of Countryside Drive

Upstream from Mid-Point

Downstream from Mid-Point

This site is located along the east side of Edwin Raynor Boulevard, north of Countryside Drive. It is in the Rock Creek subwatershed of the Patapsco Tidal watershed. Eighty-three percent of the landuse surrounding this site is residential with some open space present (9.8%). Impervious surface accounts for just under 40% of the catchment area. From the benthic macroinvertebrate sample obtained here, biological community diversity was high, with 24 different taxa present, including three EPT taxa. No scrapers were present, however, and the overall BIBI score was 2.43, Poor. Severe bank erosion affected some stretches of both streambanks, and large amounts of litter were noted by field staff. A large amount of sand was present at this site, both in the form of channel substrate and deposition that affected channel flow status and filled pools. In general, habitat conditions were somewhat degraded, as reflected by a PHI rating of Partially Degraded (score of 77.3) and a RBP rating of Partially Supporting (score of 121). A slightly low pH level was detected at this site, with in situ pH at 6.31, just below the state's minimum water quality standard of 6.5.

Results		cal Condition		Partially S	Supporting	MPHI	: Partial	ly Degr	aded		
Stream Sub	system =	Perennial		Strea	m Origin = Mi	xture of Orig	ins	S	tream Ty	/pe = Warmv	vater
Proportion o	f the Strea	am that is :	Riffles Runs Pools	30 40 30		Obvio	us Source			ershed NPS F al Watershed	
Proportion of	the Strea	m with Aqua	tic Vegetat	ion 0				Ro	ad Culve	ert Present ?	No
Percent of I	norganic	Substrate C	omponer	Its			L	eft Buf	fer Brea	ks Present ?	No
Bedrock 0 Boulder 0	Cobb	le 0 S el 10 S		35 5 0		Evidence of			a service a service of the	ks Present ? or Dredging ?	No No
Water Chem	istry	Temp	erature (C	15,7	Conductivity	/ (mS/cm)	0,265	pH	6.31	DO (ppm)	8,1

Appendix A

Site ID PTB-910-T-2009

Biological	Benthic	Condition
------------	---------	-----------

Metrics	Value	Scores	
Total Taxa	24	5	
EPT Taxa	3	3	
% Intolerant to Urban	22.41	3	
# Ephemeroptera	0	1	
% Ephemeroptera	0.00	- 1	
# Scraper	0	1	
% Climbers	6.90	з	

3

BIBI Score: 2.43 Rating: Poor

Taxa List

Taxa		Count	
Calopteryx		6	
Ceratopogonidae		1	
Chaetocladius		16	
Chaetogaster		· 10	
Cheumatopsyche		1	
Corynoneura		7	
Dolophilodes		4	
Eclipidrilus		1	
Enchytraeidae		2	
Ironoquia		1	
Lumbricidae		1	
Lumbriculus		3	
Naididae (Tubificir	nae)	3	
Nais		31	
Orthocladius		1	
Parametriocnemu	S	1	
Polypedilum		2	
Pristina		-1	
Prodiamesa		1	
Simulium		3	
Slavina		1	
Somatochlora		- 1	
Synurella		21	
Zavrelimyia		6	
	Total Count	116	

Physical	Habitat
----------	---------

Maryland Biological Stream	m Survey PHI	
Drainage Area (acres)	303.19	
Remoteness	42.78	
Percent Shading	99.94	
Epifaunal Substrate	82.89	
Instream Habitat	83.24	
Instream Woody Debris	100.00	
Bank Stability	54.77	
PHI Score	77.27	
PHI Narrative Rating:	Partially Degrad	led
EPA Rapid Bioassessmen	1	
Epifaunal Substrate / Availal	ble Cover	11
Pool Substrate Characteriza	tion	6
Pool Variability		16
Sediment Deposition		8
Channel Flow Status		11
Channel Alteration		18
Channel Sinuosity		7
Bank Stability - Left Bank		4
Right Bank		4
Vegetative Protection - Left	Bank	9
Righ	t Bank	9
Riparian Vegetative Zone W	idth - Left Bank	9
	Right Bank	9
	RBP Score	121
000 1	printing Dation	Partially Supporting

Land Use Analysis

Impervious Area (acres) 119.36 % Impervious 39.37

Land Use	Acres	% Area	-1
Residential	253.54	83.62	
Commercial	7,96	2.62	
Transportation	10.76	3.55	
Woods	29.66	9.78	
Open Space	1.28	0.42	
			and the second se

Site ID PTB-918-T-2009

Sampling Date 4/29/2009 ADC Map # 9, J-6 Watershed = Patapsco Tidal Subwatershed = Rock Creek Location = Tar Cove Park, north of golf course

Upstream from Mid-Point

Downstream from Mid-Point

Wooded landuse is dominant around site PTB-918-T-2009, contributing to 60% of the catchment area. Some residential (23%) and some open space (12%) landuses are also present, and overall imperviousness levels are only about 9%. This site is located in Tar Cove Park, north of Compass Point Golf Course. This is part of the Rock Creek subwatershed of the Patapsco Tidal watershed. Overall, the benthic macroinvertebrate community at this site indicates a stream in Poor condition, with a BIBI score of 2.14. The site scored well for the percent of the benthic sample considered intolerant of urban conditions (67%), but moderate community diversity and few EPT and no scraper taxa, as well as few climbers contributed to the Poor rating. Habitat at this site rated Minimally Degraded under the PHI with the highest total PHI score of all sites included in this study (90.6). Bank stability was good with no erosion present and a healthy riparian buffer width. Only small amounts of trash were noted. Epifaunal substrate and pool substrate were in the suboptimal to marginal ranges, and the overall RBP habitat score was 133, Supporting.

Results	Biological Cone Habitat Rating		: Support	ing MPL	II: Minima	ally Do	graded		
Stream Sub			-1.4	am Origin = Spring-fed		<u>0</u> -		ype = Warmv	vater
Proportion	of the Stream that	is : Riffl Run Poo	s 20	1	No Evidenc			ershed NPS I al Watershed	Carlos abreate
CALL MERICE	f the Stream with / Inorganic Substr				L		and the second second	ert Present ? ks Present ?	No No
Bedrock Boulder	0 Cobble 0 0 Gravel 0	Sand Silt Clay	75 25 0	Evidence				ks Present ? or Dredging ?	
Water Cher	nistry T	emperature (C) 15.1	Conductivity (mS/cm)	0.134	pН	8.07	DO (ppm)	8.4

Site ID PTB-918-T-2009

Biological Benthic Condition

Metrics	Value	Scores
Total Taxa	18	3
EPT Taxa	1	1
% Intolerant to Urban	67.29	5
# Ephemeroptera	0	1
% Ephemeroptera	0.00	1
# Scraper	0	1
% Climbers	2.80	3
BIBI Score: 2.14 Ra	ating: Po	oor

Taxa List

Taxa	1.1	Count
Caecidotea		37
Corynoneura		7
Dicranota		1
Diplocladius		3
Ephydridae		1
Ironoquia		1
Limnodrilus		2
Limnophyes		2
Nais		a
Natarsia		2
Paratendipes		2
Polypedilum		1
Rheacricotopus		2
Simulium		2
Sphaeriidae		1
Synurella		34
Tanytarsus		2
Zavrelimyia		3
	Total Count	107

Physical Habitat

Maryland Biological Stream	m Survey PHI		
Drainage Area (acres)	114.44		
Remoteness	65.72		
Percent Shading	99.94		
Epifaunal Substrate	89.24		
Instream Habitat	100.00		
Instream Woody Debris	88.76		
Bank Stability	100.00		
PHI Score	90.61		
PHI Narrative Rating:	Minimally Degra	ded	
EPA Rapid Bioassessment	t		
Epifaunal Substrate / Availat	ole Cover	13	
Pool Substrate Characteriza	tion	7	
Pool Variability		8	
Sediment Deposition		7	
Channel Flow Status		15	
Channel Alteration		18	
Channel Sinuosity		11	
Bank Stability - Left Bank		9	
Right Bank		9	
Vegetative Protection - Left	Bank	9	
Righ	t Bank	9	
Riparian Vegetative Zone W	idth - Left Bank	9	
	Right Bank	9	
	RBP Score	133	
RBP N	arrative Rating:	Supportin	ng
a statement and second			

Impervious Area (acres)	10.86 %	mpervious	9.49
Land Use	Acre	es <u>% Are</u>	a
Residential	26.5	51 23.16	5
Commercial	1.1	1 0.97	
Transportation	3.9	7 3.47	
Woods	68.6	59.95	5
Open Space	14.2	12.45	5
the second s			

Site ID PTC-941-T-2009

Sampling Date 4/20/2009 ADC Map # 3, B-10 Watershed = Patapsco Tidal Subwatershed = Back Creek Location = Chesapeake Center Drive at Glen Burnie Mall

Upstream from Mid-Point

Downstream from Mid-Point

The catchment surrounding this site had the greatest percentage of impervious surface (65%) of any site in this study. More than half of the landuse here is commercial, with another 32% residential, and 6.7% transportation-related. Only 6.8% of the surrounding landuse is wooded. This site is part of the Back Creek subwatershed in the Patapsco Tidal watershed. It is located off of Chesapeake Center Drive at the Centre at Glen Burnie shopping center, and it was littered with large amounts of trash when the field crew visited. In addition, in situ pH values at this site were 8.68, a bit above the state's maximum water quality standard of 8.5. The benthic community at this site scored among the lowest of all sites included in this survey (BIBI score of 1.57, Very Poor), which was not surprising, given the prevalence of impervious cover and the site's proximity to a large retail area. There were very few macroinvertebrates living in this stream, and only 4 taxa were present in the benthic sample, none of which were EPT taxa nor any taxa considered intolerant of urban conditions. Some bank erosion affected portions of both banks, and the riparian buffer zone width rated at the low end of suboptimal. Instream habitat, epifaunal substrate, and pool substrate showed signs of degradation, and the site rated as Partially Degraded under the PHI with a score of 68.1. Under the RBP, this site rated Supporting with a total score of 126.

Results	Biological Habitat Ra	Condition : ating :	Very Poo RBP : S		ng MPH	I: Partiall	y Degi	raded		
Stream Sub	osystem = Pe	erennial		Strea	am Origin = Spring-fed		S	tream Ty	/pe = Warmw	vater
	of the Stream		Riffles Runs Pools	25 50 25	۱ ٦	lo Evidenc	N	lone Loc	ershed NPS F al Watershed ert Present ?	
Percent of Bedrock	Inorganic Su Cobble Gravel	1.1.2.6	mponents		Evidence of	Riç	eft Bui ght Bui	fer Brea Iter Brea	ks Present?	No No
Water Cher	nistry	Temper	ature (C)	12.1	Conductivity (mS/cm)	0.086	pH	8.68	DO (ppm)	10.9

Site ID PTC-941-T-2009

Distantes	Denthie	Candillan
Biological	Benthic	Condition

Metrics	Value	Scores
Total Taxa	4	.1
ЕРТ Таха	0	11
% Intolerant to Urban	0.00	1
# Ephemeroptera	0	1
% Ephemeroptera	0.00	1
# Scraper	0	†
% Climbers	25.00	5
BIBI Score: 1.57 R	ating: Ve	ery Poor

Taxa List

Enchytraeidae 6 Limnodritus 4 Naididae (Tubificinae) 5 Polypedilüm 5 Total Count 20	Taxa		Count
Naididae (Tubificinae) 5 Polypedilum 5	Enchytraeidae		6
Polypedilum 5			- 4
		cinae)	
Total Count 20	Polypedilum		5
		Total Count	20

Physical Habitat

Maryland Biological Stream	n Survey PHI	
Drainage Area (acres)	346.78	
Remoteness	33.89	
Percent Shading	78.67	
Epifaunal Substrate	47.16	
Instream Habitat	81.87	
Instream Woody Debris	73.25	
Bank Stability	93.99	
PHI Score	68.14	
PHI Narrative Rating:	Partially Degraded	

EPA Rapid Bioassessment

Epifaunal Substrate / Available Cover	10
Pool Substrate Characterization	8
Pool Variability	15
Sediment Deposition	13
Channel Flow Status	17
Channel Alteration	17
Channel Sinuosity	8
Bank Stability - Left Bank	7
Right Bank	7
Vegetative Protection - Left Bank	6
Right Bank	6
Riparian Vegetative Zone Width - Left Bank	6
Right Bank	6
RBP Score	126
RBP Narrative Rating:	Supporting

Land Use Analysis

Impervious Area (acres) 226.04 % Impervious 65.18

Land Use	Acres	% Area
Residential	110.99	32.01
Commercial	183.58	52.94
Transportation	23.17	6.68
Woods	23.53	6.78
Open Space	5.51	1.59

Site ID PTC-942-T-2009

Sampling Date 4/22/2009 ADC Map # 3, E-10 Watershed = Patapsco Tidal Subwatershed = Back Creek Location = McLean Way, at the Bay Meadow Industrial Park

Upstream from Mid-Point

Downstream from Mid-Point

This Patapsco Tidal watershed site is located in the Back Creek subwatershed off McLean Way, at the Bay Meadow Industrial Park. Commercial landuse is the most prevalent in the surrounding catchment (36%), but a mixture of other landuses also contribute, including residential (21%), wooded (15%), and open space, industrial, and transportation (each approximately 9% of catchment area). This results in a fairly high amount of impervious surface (52% of the surrounding catchment). Likely a result of degradation associated with this urbanized area, the benthic community at this site received an overall rating of Very Poor, with a BIBI score of 1.86. Benthos exhibited a moderate community diversity, with EPT and scraper taxa lacking, and only one macroinvertebrate considered intolerant of urban conditions. The sampled reach contained no riffles, and very little instream wood, thus benthic habitat was lacking. Bank erosion affected both streambanks, and sand dominated the substrate material. Some SAV was present at the site. Under the PHI, habitat rated Degraded with a score of 61.4. Under the RBP, habitat rated Partially Supporting (score of 116).

Results		ical Condition t Rating :		y Poor P∶ Pa		Supporting	MPH	I: Degra	ded			
Stream Su	bsystem =	Perennial	-		Strea	m Origin = S	wamp and B	og	S	tream T	ype = Warmv	vater
Proportion	of the Stre	am that is :	Ru	ns	0 80 20		N	o Evideno			tershed NPS I al Watershed	
Proportion of	of the Strea	am with Aqu	uatic Vege	etation	3	1			Ro	ad Culve	ert Present ?	No
Percent of	Inorganic	Substrate	Compo	nents	11	÷		1	eft Bu	fer Brea	ks Present ?	No
Bedrock Boulder	0 Cobb 0 Grav	le 0	Sand Silt Clay	100 0 0			Evidence of		-		iks Present ? or Dredging ?	
Water Che	mistry	Ten	perature	(C)	14	Conductiv	ity (mS/cm)	0.402	pH	6.98	DO (ppm)	8.4

Site ID PTC-942-T-2009

Biological Benthic Condition

Metrics	Value	Scores
Total Taxa	21	3
EPT Taxa	0	1
% Intolerant to Urban	1.02	1
# Ephemeroptera	0	1
% Ephemeroptera	0.00	1
# Scraper	0	1
% Climbers	10.20	5
BIBI Score: 1.86 R	ating: Ve	ery Poor

Taxa List

Taxa	Count	
Caecidotea	1	
Chaetocladius	5	
Chironomus	7	
Crambidae	1	
Cryptochironomus	2	
Culicoides		
Dicrotendipes	4	
Eclipidrilus	2	
Enchytraeidae	7	
Gammarus	15	
Limnodrilus	.9	
Lumbriculus	2	
Naididae (Tubificinae)	21	
Nais	з	
Orthocladius	2	
Peltodytes	đ (
Pisidium	2	
Polypedilum	8	
Sciomyzidae	1	
Sphaeriidae	3	
Unionicola	1	
Total Count	98	

Physical Habitat

Maryland Biological Stream	n Survey PHI	
Drainage Area (acres)	824,65	
Remoteness	46.55	
Percent Shading	49.95	
Epifaunal Substrate	70.56	
Instream Habitat	56.35	
Instream Woody Debris	54.57	
Bank Stability	90.37	
PHI Score	61.39	
PHI Narrative Rating:	Degraded	
EPA Rapid Bioassessment	t	
Epifaunal Substrate / Availab	ble Cover	10
Pool Substrate Characterizat	tion	8
Pool Variability		14
Sediment Deposition		11
Channel Flow Status		17
Channel Alteration		11
Channel Sinuosity		11
Bank Stability - Left Bank		6
Right Bank		4
Vegetative Protection - Left I	Bank	5
Right	Bank	5
Riparian Vegetative Zone W	idth - Left Bank	6
	Right Bank	8
	RBP Score	116
BBP N	arrative Bating:	Partially Supporting

Land Use Analysis

Impervious Area (acres) 429.40 % Impervious 52.07

Land Use	Acres	% Area	
Residential	174.82	21.20	
Commercial	300.17	36.40	
Industrial	73.17	8.87	
Transportation	73.31	8.89	
Woods	126.99	15.40	
Open Space	74.27	9.01	
Water	1,91	0.23	

Site ID PTD-922-T-2009

Sampling Date 4/21/2009 ADC Map # 7, E-4 Watershed = Patapsco Tidal Subwatershed = Sawmill Creek 2 Location = Queenstown Park

Upstream from Mid-Point

Downstream from Mid-Point

This site is located at Queenstown Park, and is part of the Sawmill Creek 2 subwatershed leading to the Patapsco Tidal watershed. The most prevalent landuses surrounding this site are residential and wooded, each accounting for approximately 37% of the surrounding catchment area, and approximately 17% of the catchment is impervious. The benthic community at this site scored the highest out of all sites in this study, with a total BIBI score of 4.14. A healthy, diverse community, with healthy numbers of EPT and scraper taxa, and a good proportion of climbers contributed to this Good rating. A minimal amount of bank erosion was present along both banks, and very little trash was noted by the field crew. However, deep pools were missing and sediment deposition and pool substrate each rated Marginal. Overall, the habitat at this site rated Partially Degraded according to the PHI (score of 79.3) and Supporting according to the RBP (score of 131).

Results	Biological Cond Habitat Rating :		Supporting	мен	I: Partial	ly Deg	raded		
Stream Sut	osystem = Perenni	ial	Stream	n Origin = Spring-ted		S	tream T	ype = Warmv	vater
Proportion	of the Stream that is	s : Riffles Runs Pools	60 30 10	Ν	lo Evideno			tershed NPS F al Watershed	
Proportion of	f the Stream with A	quatic Vegetati	on 0	1		Ro	ad Culve	ert Present ?	No
Percent of	Inorganic Substra	te Componen	ts	SC	L	eft Bu	ffer Brea	ks Present ?	No
Bedrock	0 Cobble 0 0 Gravel 20	Sand 7	75- 5- 0-	Evidence o				iks Present ? or Dredging ?	
Water Cher	nistry Te	emperature (C)	11.2	Conductivity (mS/cm)	0.157	pH	8.37	DO (ppm)	10.7

Site ID PTD-922-T-2009

Biological Benthic Condition

Metrics	Value	Scores	
Total Taxa	37	5	
EPT Taxa	4	3	
% Intolerant to Urban	29.20	5	
# Ephemeroptera	2	3	
% Ephemeroptera	1.77	3	
# Scraper	5	5	
% Climbers	14.16	5	
BIBI Score: 4.14 R	ating: G	ood	

Taxa List

Taxa	Count
Acerpenna	2
Aedes	1
Amphinemura	1
Aulodrilus	3
Caecidotea	7
Ceratopogon	З
Corduliidae	1
Corynoneura	3
Cryptochironomus	1
Dicranota	2
Dubiraphia	1
Eclipidrilus	1
Enchytraeidae	2
Hyalella	1
Hydrobaenus	1
Hydrobius	2
Ironoquia	12
Kloosia	2
Limnodrilus	1
Lumbriquius	1
Lype	1
Microvelia	1.1
Naldidae (Tubificinae)	2
Nais	14
Onhocladius	t 1
Paracladopelma	2
Physa	1
Pisidium	7
Polypedilum	12
Pseudorthocladius	7
Ptychopteridae	1 -
Simulium	1
Smittia	1
Stenelmis	
Synurella	17
Tanytarsus	1
Tipula	1
Total Count	113

Physical Habitat

urvey PHI 82.06 2.52 9.94 4.60 2.41 1.49 4.87 9.31 tially Degrad	led	
2.52 9.94 4.60 2.41 1.49 4.87 9.31	led	
9.94 4.60 2.41 1.49 4.87 9.31	led	
4.60 2.41 1.49 4.87 9.31	led	
2.41 1.49 4.87 9.31	led	
1.49 4.87 9.31	led	
4.87 9.31	led	
9,31	led	
	ded	
tially Degrac	led	
Cover	11	
	8	
	8	
	10	
	17	
	18	
	9	
	9	
	9	
k	7	
nk	7	
- Left Bank	9	
Right Bank	9	
RBP Score	131	
tive Rating:	Supporting	
	Right Bank RBP Score	8 10 17 18 9 9 9 9 8 4 7 nk 7 7 nk 7 7 1 - Left Bank 9 Right Bank 9

Land Use Analysis

	Impervious Area (acres) 191	.38 % Impe	rvious 17	.69
-	Land Use	Acres	% Area	
	Residential	404.54	37.39	
	Commercial	41.34	3.82	
	Industrial	40.39	3.73	
	Utility	2.44	0.23	
	Transportation	46.47	4.29	
	Row Crops	5.26	0.49	
	Woods	397.79	36.76	
	Open Space	140.79	13.01	
	Water	3.03	0.28	

Site ID PTD-924-T-2009

Sampling Date 4/21/2009 ADC Map # 7, E-3 Watershed = Patapsco Tidal Subwatershed = Sawmill Creek 2 Location = Friendship Park

Upstream from Mid-Point

Downstream from Mid-Point

This Friendship Park site is part of the Sawmill Creek 2 subwatershed in the Patapsco Tidal watershed. Industrial landuse contributes to 31% of the catchment area, followed by wooded and open space, which each account for approximately 25%. The overall catchment impervious percentage is 38%. Benthic macroinvertebrates sampled at this site indicate a fairly healthy stream, with an overall BIBI score of 3.57 (Fair). There was good community diversity, with moderate amounts of EPT taxa present, but overall very few macroinvertebrates considered intolerant of urban conditions. A minimal amount of bank erosion was present along both streambanks, while moderate amounts of sediment deposition affected substrate. Instream wood was completely absent and only one piece of dewatered wood was present in the reach. Habitat was rated Partially Degraded (76.3) under the PHI and Supporting (129) under the RBP.

Results		Condition :		lunnarti	140	(L. Dartial	h. Dee	radiad		
	Habitat Ra	ating :	RBP : 3	supportin	ig MPi	H: Partial	ly Degi	aoeo		
Stream Sub	system = Pe	erennial	-	Strea	am Origin = Spring-fed		S	tream T	ype = Warmw	vater
Proportion of	of the Stream	that is :	Riffles	25		No Evidence	ce of Lo	ocal Wat	tershed NPS F	ollution
C. Statema			Runs	50			N	lone Loc	al Watershed	Erosion
			Pools	25						
Proportion o	f the Stream v	with Aquatic	Vegetatio	0 0	1		Ro	ad Culve	ert Present ?	No
Percent of	Inorganic Su	bstrate Co	mponent	s	-	L	eft Buf	fer Brea	ks Present ?	No
Bedrock	Cobble	0 Sa				Bi	ght Bul	lfer Brea	ks Present ?	No
Boulder	Gravel	40 Silt	0	51.	Evidence	of Channel	Straig	htening	or Dredging ?	No
		Cla	y O	11.70						
Water Chen	nistry	Temper	ature (C)	12.8	Conductivity (mS/cm)	0.233	pН	8.07	DO (ppm)	10.8

Site ID PTD-924-T-2009

Biological Benthic Condition

Metrics	Value	Scores
Total Taxa	38	5
EPT Taxa	4	3
% Intolerant to Urban	6.92	1
# Ephemeroptera	4	5
% Ephemeroptera	3.08	з
# Scraper	5	5
% Climbers	2.31	з

BIBI Score: 3.57 Rating: Fair

a List	and a
Taxa	Count
Ablabesmyla	1
Aulodrilus	3
Bezzia	5
Caenis	з
Calopteryx	1
Chaetogaster	9
Conchapelopia	Ť
Corbicula	31
Corynoneura	1
Cryptochironomus	1
Culicoides	1 -
Diplocladius	8
Eurylophella	1
Girardia	1
Gomphus	1
Gymnometriocnemus	з
Hyalella	з
Krenosmittia	1
Larsia	2
Lymnaea	- t -
Macronychus	1
Microvelia	Ť
Nais	6
Neoponis	1
Orthocladius	з
Oulimnius	1
Parametriocnemus	4
Paratanytarsus	1
Peltodytes	1
Polycentropus	1
Pristina	11
Probezzia	4
Procladius	1
Slavina	з
Stenelmis	11
Thienemanniella	1
Triaenodes	1 -
Turbellaria	з
Total Count	130

Physical Habitat

Maryland Biological Stream	m Survey PHI		
Drainage Area (acres)	247.74		
Remoteness	37.50		
Percent Shading	91.34		
Epifaunal Substrate	84.20		
Instream Habitat	90.86		
Instream Woody Debris			
Bank Stability	94.87		
PHI Score	76.35		
PHI Narrative Rating:	Partially Degrade	ed	
EPA Rapid Bioassessmen	t		
Epifaunal Substrate / Availa	ble Cover	12	
Pool Substrate Characteriza	ition	7	
Pool Variability		7	
Sediment Deposition		11	
Channel Flow Status		16	
Channel Alteration	18		
Channel Sinuosity	10		
Bank Stability - Left Bank	9		
Right Bank	9		
Vegetative Protection - Left	6		
Righ	t Bank	6	
Riparian Vegetative Zone W	/idth - Left Bank	9	

RBP Narrative Rating: Supporting

Right Bank

RBP Score 129

9

Land Use Analysis

Impervious Area (acres) 94.70) % Impervious 38.22
Land Use	Acres % Area
Residential	12.30 4.96
Commercial	1.59 0.64
Industrial	77.78 31.39
Transportation	16.89 6.82
Airport	14.17 5.72
Woods	63.77 25.74
Open Space	59.74 24.12
Water	1.51 0.61
	and the second sec

Site ID PTD-928-T-2009

Sampling Date 4/21/2009 _____ ADC Map # 7, H-2 Watershed = Patapsco Tidal Subwatershed = Sawmill Creek 2 Location = Between Sawmill Creek Park and Glenview Avenue

Upstream from Mid-Point

Downstream from Mid-Point

Landuse around this site is mainly a mixture of wooded (35%), residential (24%), and open space (22%), but a variety of other landuses are present in small amounts, resulting in 21% impervious surface in the catchment. This site is between Sawmill Creek Park and Glenview Avenue, in the Sawmill Creek 2 subwatershed of the Patapsco Tidal drainage. Beaver activity was obvious at this site, and a landowner expressed concern to the field crew about possible damage caused by beavers. Mowed lawn adjacent to the stream resulted in a partially open canopy (only 45% shading) and a poor riparian vegetative zone width, particularly along the right bank. Embeddedness was low and some SAV was present. Habitat rated Degraded under the PHI with a score of 58.3 and Partially Supporting under the RBP with a score of 117 (58.5% comparable to reference). The benthic community at this site was diverse, with 26 different taxa found in the benthic sample. Some EPT taxa were present, but no scrapers, and only a few macroinvertebrates intolerant of urban conditions. Overall, the BIBI score was 2.43 (Poor).

Results	Biological Con Habitat Rating			rtially Support	ing MPH	II: Degra	ded			
Stream Sub	osystem = Pereni	nial		Stream Orig	in = Spring-fed	-	S	tream T	ype = Warmv	vater
Proportion	of the Stream that	is Riff Rur Poc	is 4	30 40 30	Ν	Vo Evidenc	2.00		tershed NPS F al Watershed	
Proportion o	the Stream with	Aquatic Vege	tation	25			Ro	ad Culve	ert Present ?	No
Percent of	Inorganic Substr	ate Compon	ents	dan san		1	eft But	ffer Brea	ks Present ?	No
Bedrock	0 Cobble 0 0 Gravel 20	Sand	60 20 0		Evidence o				ks Present ? or Dredging ?	
Water Cher	nistry T	emperature	(C)	15.2 Con	ductivity (mS/cm)	0.208	рН	7.96	DO (ppm)	10.4

Appendix A

Site ID PTD-928-T-2009

Biological	Benthic	Condition
------------	---------	-----------

Metrics	Value	Scores	
Total Taxa	26	5	
ЕРТ Таха	.4	3	
% Intolerant to Urban	3.81	1	
# Ephemeroptera	0	1	
% Ephemeroptera	0.00	1	
# Scraper	0	1	
% Climbers	12.38	5	
Court of a second			

BIBI Score: 2.43 Rating: Poor

a List	
Taxa	Count
Aulodrilus	3
Caecidotea	2
Chimarra	1
Crangonyx	2
Cryptochironomus	1
Diplectrona	1
Enchytraeidae	3
Gammarus	52
Ironoguia	2
Isotomidae	1
Lebertia	1
Lepidostoma	1
Mallochohelea	.1
Naididae (Tubificinae)	8
Nais	1
Orthocladiinae	
Orthocladius	1
Paraphaenocladius	
Pericoma/Telmatoscopus	1
Polypedilum	10
Pristina	1
Simulium	2
Smittia	1
Sphaeriidae	3
Tanytarsus	2
Thienemannimyla group	2
Total Count	105

Physical Habitat

nyonaan naamar		
Maryland Biological Strea	m Survey PHI	
Drainage Area (acres)	2637.77	
Remoteness	37.50	
Percent Shading 45.47		
Epifaunal Substrate	28.13	
Instream Habitat	94.39	
Instream Woody Debris	44.36	
Bank Stability	100.00	
PHI Score	58.31	
PHI Narrative Rating:	Degraded	
EPA Rapid Bioassessmen	t	
Epifaunal Substrate / Availa	ble Cover	8
Pool Substrate Characteriza	ation	7
Pool Variability		10
Sediment Deposition		10
Channel Flow Status		17
Channel Alteration		18
Channel Sinuosity		10
Bank Stability - Left Bank		9
Right Bank		9
Vegetative Protection - Left	Bank	5
Righ	t Bank	3
Riparian Vegetative Zone W	/idth - Left Bank	9
	Right Bank	2
	RBP Score	117
RBP N	arrative Rating:	Partially Supporting

Land Use Analysis

Impervious Area (acres) 556.45	% Impe	ervious 21.10
Land Use	Acres	% Area
Residential	639.55	24.25
Commercial	80.81	3.06
Industrial	127.72	4.84
Utility	14.47	0.55
Transportation	163.56	6.20
Airport	92,34	3.50
Row Crops	5.26	0.20
Woods	922.18	34.96
Open Space	586.44	22.23
Water	5.44	0.21
	1.1.1.5	

Site ID PTF-915-T-2009

Sampling Date 4/23/2009 ADC Map # 8, C-6 Watershed = Patapsco Tidal Subwatershed = Marley Creek 3 Location = Marley Station Mall

Upstream from Mid-Point

Downstream from Mid-Point

This site can be accessed from the Marley Station Mall, in the northwest corner of the parking lot. It is part of the Marley Creek 3 subwatershed in the Patapsco Tidal watershed. Most of the landuse in the surrounding area is residential (55%) and wooded (18%), and the shopping center and other commercial areas contribute to about 11% of the catchment area. This results in 36% impervious surface in the surrounding catchment. Benthic community diversity was somewhat diminished at this site, and no macroinvertebrates considered intolerant to urban conditions and no scraper taxa were obtained through benthic sampling. The site received a BIBI score of 2.14 (Poor). Field crew members noted large amounts of trash present at the time of sampling. Channel substrate was dominated by silt (60%) with some sand and gravel, and sediment deposition rated Marginal. Thus epifaunal substrate, pool substrate, and instream habitat conditions were all less than ideal. Habitat overall was rated Degraded under the PHI (57.7) and Supporting under the RBP habitat assessment procedure (score of 139).

Results	Biological Condition Habitat Rating :		Supportin	g MPH	I: Degrad	ded			
Stream Sut	osystem = Perennial		Stream	m Origin = Spring-fed		S	tream T	ype = Warmv	vater
I .	of the Stream that is :	Riffles Runs Pools	15 80	•	lo Evidenc	N	lone Loc	tershed NPS F cal Watershed	and an all here a
	f the Stream with Aqu					- C - C - C - C - C - C - C - C - C - C		ert Present ?	No
Percent of	Inorganic Substrate	Component	S					ks Present?	No
Bedrock	Cobble 0	Sand 2	0		Rig	ght Bu	ffer Brea	aks Present ?	No
Boulder		Silt 6 Clay (0	Evidence o	f Channel	Straig	htening	or Dredging ?	No
Water Cher	nistry Tem	perature (C)	12.2	Conductivity (mS/cm)	0.225	pН	8.1	DO (ppm)	10.7

Site ID PTF-915-T-2009

Biological Benthic Condition

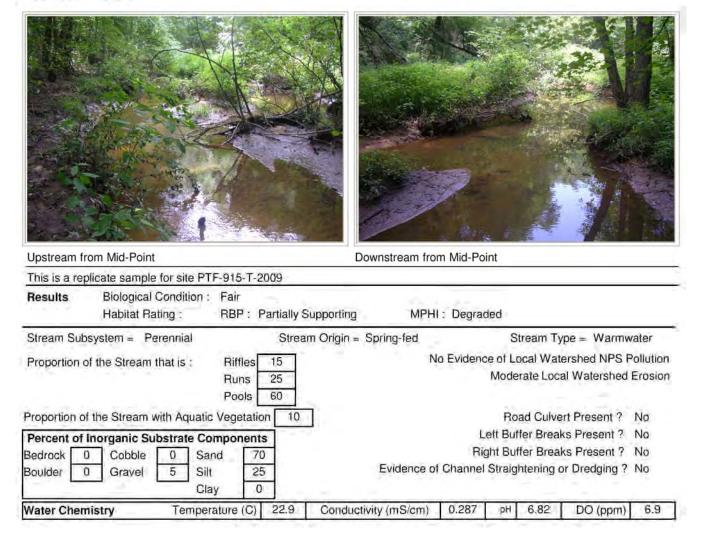
Value	Scores
16	3
2	3
0.00	1
0	1
0.00	1)
0	1
14.16	5
	16 2 0.00 0 0.00 0

BIBI Score: 2.14 Rating: Poor

Taxa	Count
Argia	1
Brillia	1
Cheumatopsyche	34
Cladotanytarsus	5
Corynoneura	6
Cricotopus	2
Enallagma	1
Hydropsyche	22
Limnodrilus	1-
Naididae (Tubificinae)	3
Nais	2
Polypedilum	15
Pristina	t
Rheotanytarsus	1
Stenochironomus	16
Tvetenia	2
Total Count	113

Physical Habitat

Maryland Biological Stream	m Survey PHI		
Drainage Area (acres)	2638.60		
Remoteness	37.50		
Percent Shading	63.55		
Epifaunal Substrate	33.94		
Instream Habitat	61.10		
Instream Woody Debris	50.27		
Bank Stability	100.00		
PHI Score	57.72		
PHI Narrative Rating:	Degraded		
EPA Rapid Bioassessmen	t		
Epifaunal Substrate / Availat	ole Cover	11	
Pool Substrate Characteriza	tion	11	
Pool Variability		12	
Sediment Deposition		7	
Channel Flow Status		18	
Channel Alteration		18	
Channel Sinuosity		10	
Bank Stability - Left Bank		8	
Right Bank		9	
Vegetative Protection - Left	Bank	9	
Righ	t Bank	8	
Riparian Vegetative Zone W	idth - Left Bank	9	
	Right Bank	9	
	RBP Score	139	
DRD N	arrative Rating:	Supporting	


Land Use Analysis

Impervious Area (acres) 9	141.23 % Impe	rvious 35
Land Use	Acres	% Area
Residential	1446.50	54.82
Commercial	291.42	11.04
Industrial	14.18	0.54
Utility	17.99	0.68
Transportation	178.66	6.77
Pasture/Hay	2.96	0.11
Row Crops	52.57	1.99
Woods	490.81	18.60
Open Space	139.88	5.30
Water	3.63	0.14

Site ID PTF-D15-T-2009

Sampling Date 4/23/2009 ADC Map # 8, B-6 Watershed = Patapsco Tidal Subwatershed = Marley Creek 3 Location = Marley Station Mall

Site ID PTF-D15-T-2009

Biological Benthic Condition

Metrics	Value	Scores	
Total Taxa	35	5	
EPT Taxa	1	1	
% Intolerant to Urban	15.25	з	
# Ephemeroptera	0	1	
% Ephemeroptera	0.00	1	
# Scraper	4	5	
% Climbers	27.12	5	
BIBI Score: 3.00 R	ating: Fa	air	

Taxa List

Taxa	Count
Ablabesmyia	1
Ancyronyx	7
Argia	1
Atrichopogon	3
Aulodrilus	4
Chironomus	1
Cladopelma	з
Cladotanytarsus	а
Conchapelopia	1
Cricotopus	10
Cryptochironomus	5
Diplocladius	1
Dubiraphia	4
Enchytraeidae	1
Lepidoptera	1
Limnodrilus	1
Macronychus	2
Naididae (Tubificinae)	5
Nais	2
Nanocladius	- 4
Orthocladius	2
Parakiefferiella	6
Paratendipes	E
Phaenopsectra	3
Polypedilum	32
Probezzia	12
Pseudorthocladius	1
Smittia	1
Sphaenidae	1
Stenelmis	1
Stenachironomus	1
Thienemanniella	1
Thienemannimyia group	1
Triaenodes	1
Tribelas	Э
Total Count	118

Physical Habitat

Maryland Biological Stream	m Survey PHI	
Drainage Area (acres)	2638.60	
Remoteness	28.28	
Percent Shading	68.32	
Epifaunal Substrate	51.36	
Instream Habitat	55.55	
Instream Woody Debris	50.27	
Bank Stability	77.46	
PHI Score	55.21	
PHI Narrative Rating:	Degraded	
EPA Rapid Bioassessmen	t	
Epifaunal Substrate / Availal		10
Pool Substrate Characteriza	tion	11
Pool Variability	10	
Sediment Deposition		5
Channel Flow Status		11
Channel Alteration		18
Channel Sinuosity		6
Bank Stability - Left Bank		8
Right Bank		8
Vegetative Protection - Left	Bank	5
Righ	t Bank	8
Riparian Vegetative Zone W	lidth - Left Bank	9
	Right Bank	9
	RBP Score	118
RBP N	arrative Rating:	Partially Supporting

Land Use Analysis

Impervious Area (acres) 941.23 % Impervious 35.67

Land Use	Acres	% Area
Residential	1446.50	54.82
Commercial	291.42	11.04
Industrial	14.18	0.54
Utility	17.99	0.68
Transportation	178.66	6.77
Pasture/Hay	2.96	0.11
Row Crops	52.57	1.99
Woods	490.81	18.60
Open Space	139.88	5.30
Water	3.63	0.14

Site ID PTG-903-T-2009

Sampling Date 4/20/2009 ADC Map # 8, C-10 Watershed = Patapsco Tidal Subwatershed = Marley Creek 4 Location = Williamstowne Drive, between Mali Court and Williamstowne Court

Upstream from Mid-Point

Downstream from Mid-Point

This Marley Creek 4 site is located in the Patapsco Tidal watershed, off of Williamstowne Drive, between Mali Court and Williamstowne Court. At this site, residential landuse dominates the surrounding catchment, contributing to 87% of the catchment area. Twenty-nine percent of the catchment consists of impervious surfaces. Riparian buffer was lacking on the right side of the stream, likely resulting in unstable, erosive banks. In fact, a landowner near this site expressed concern that the erosion is so great that the stream might erode into his property. Moderate amounts of trash were present, along with some SAV. With some cobble in the channel substrate and a good proportion of riffles throughout the reach, epifaunal substrate rated Suboptimal, as did pool substrate. Overall, the RBP rated habitat at this site as Supporting, with a score of 126, while the PHI rated it as Partially Degraded with a score of 75.2. With an overall BIBI score of 3.86, this site rated Fair according to the benthic macroinvertebrate community obtained here. There were 7 different EPT taxa in the benthic sample, the most EPT taxa found at any site in this study. Community diversity was good, and approximately 25% of the macroinvertebrates in the sample were considered intolerant of urban conditions.

Results	10000	cal Condition Rating :		Supportir	ng MF	HI: Partial	ly Degr	aded		
Stream Sub	system =	Perennial		Strea	m Origin = Spring-fed		S	tream T	ype = Warmw	vater
Proportion of the Stream that is :		Riffles Runs Pools	50 40 10		No Evidence of Local Watershed NPS Pollul Moderate Local Watershed Eros				Table a tribella	
Proportion o	f the Strea	m with Aquat	ic Vegetatio	on 5					ert Present ?	No
Percent of	Inorganic	Substrate C	omponent	s					ks Present ?	
Bedrock	0 Cobbl 0 Grave	1 0 S	and 0 ilt 60 lay 25	0	Evidence		•		iks Present ? or Dredging ?	
Water Cher	nistry	Tempe	erature (C)	11.1	Conductivity (mS/cm) 0.105	pН	8.4	DO (ppm)	10.3

Site ID PTG-903-T-2009

Distanted	Dauthia	Condition
Diological	Denthic	Condition

Metrics	Value	Scores
Total Taxa	23	5
EPT Taxa	7	5
% Intolerant to Urban	23.58	3
# Ephemeroptera	2	5
% Ephemeroptera	1.89	3
# Scraper	1	З
% Climbers	0.94	З
BIBI Score: 3.86 R	ating: Fa	air

Taxa List

Taxa		Count
Acentrella		1
Amphinemura		1
Antocha		1
Chaetocladius		37
Cheumatopsyche		1
Diplociadius		2
Enchytraeidae		1
Ephemerella		1
Eukiefferiella		з
Hydrobaenus		2
Ironoquia		1
Lebertia		T
Lumbricidae		2
Naididae (Tubifici	nae)	6
Nais		7
Orthocladius		- 9
Polypedilum		1
Pseudosmittia		1
Shipsa		1
Simulium		14
Stactobiella		3
Stygobromus		3
Synurella		22
	Total Count	106

Physical Habitat

Maryland Biological Strea	m Survey PHI		_
Drainage Area (acres)	167.96		
Remoteness	24.93		
Percent Shading	78.67		
Epifaunal Substrate	92.55		
Instream Habitat	100.00		
Instream Woody Debris	69.62		
Bank Stability	85.15		
PHI Score	75.15		
PHI Narrative Rating:	Partially Degrad	ed	
EPA Rapid Bioassessmen	ıt.		
Epifaunal Substrate / Availa	ble Cover	15	
Pool Substrate Characteriza	ation	14	
Pool Variability		13	
Sediment Deposition		8	
Channel Flow Status		18	
Channel Alteration		16	
Channel Sinuosity		14	
Bank Stability - Left Bank		6	
Right Bank		3	
Vegetative Protection - Left	Bank	6	
Righ	nt Bank	3	
Riparian Vegetative Zone V	Vidth - Left Bank	9	
Active second	Right Bank	1	
	RBP Score	126	
RBP N	arrative Rating:	Supporting	

Land Use Analysis

Impervious Area (acres) 49.33	% Impe	ervious 29.37
Land Use	Acres	% Area
Residential	146.40	87.16
Transportation	6.96	4.15
Woods	12,09	7.20
Open Space	2.51	1.49

Site ID PTG-905-T-2009

Sampling Date 4/20/2009 ADC Map # 7, J-9 Watershed = Patapsco Tidal Subwatershed = Marley Creek 4 Location = Between Nolberry Drive and Phirne Drive

Upstream from Mid-Point

Downstream from Mid-Point

A variety of landuses contribute to the catchment area here, including residential (29%), commercial (23%), and wooded (18%). In addition, row crop landuse is present in the surrounding catchment, contributing 9.5% of total area – the largest proportion of row crop landuse of sites included in this survey. Impervious surfaces occupy 39% of the surrounding catchment. This site is located in open space between Nolberry Drive and Phirne Drive, and is part of the Marley Creek 4 subwatershed of the Patapsco Tidal watershed. The stream is located very close to the road and the field crew noted large amounts of trash present. The benthic community at this site revealed less than ideal conditions, as only one EPT taxa and only one scraper taxa were present in the benthic sample, and no climbers were found. In addition, less than 2% of the macroinvertebrates sampled were considered intolerant of urban conditions. Overall, the BIBI rated this site as Very Poor, with a score of 1.57. Some erosion was present along both banks, and the stream exhibited some channelization in the vicinity of a 5-meter wide and 18-meter long culvert. Under the PHI, habitat at this site scored 76.4 (Partially Degraded), and under the RBP, it scored 143 (Supporting).

Results	Biological Cond Habital Rating :		Poor : Supporti	ng MP	HI : Partial	ly Degr	aded		
Stream Subsystem = Perennial		Stre	am Origin = Spring-fed		S	tream T	ype = Warmv	vater	
Proportion of the Stream that is : Riffles Runs Pools Proportion of the Stream with Aquatic Vegetati		s 30 Is 10	7	No Evidence of Local Watershed NPS Pollu None Local Watershed Eros Road Culvert Present ? Yes			Erosion		
Percent of	Inorganic Substra	te Compon	ents	2	- L	eft Buf	fer Brea	ks Present ?	No
Bedrock Boulder	0 Cobble 0 0 Gravel 35	Sand Silt Clay	50 15 0	Evidence		-		ks Present ? or Dredging ?	
Water Cher	nistry Te	emperature (C) 11.5	Conductivity (mS/cm)	0.103	pH	8.49	DO (ppm)	11.2

Site ID PTG-905-T-2009

Biological Benthic Condition

Metrics	Value	Scores
Total Taxa	17	3
EPT Taxa	1	1
% Intolerant to Urban	1.92	1
# Ephemeroptera	0	1
% Ephemeroptera	0.00	1
# Scraper	1	з
% Climbers	0.00	1
BIBI Score: 1.57 R	ating: Ve	ery Poor

Taxa List

Taxa	Count	
Amphinemura	1	
Culicoides	20.1	
Enchytraeidae	15	
Hydrobaenus	1	
Isotomidae	2	
Lebertia	1	
Lumbricidae	2	
Lumbriculus	3	
Megascolecidae	2	
Naididae (Tubificinae)	1	
Nais	7	
Orthocladius	1 -	
Prostoma	4	
Pseudorthocladius	5	
Pseudosmittia	2	
Smittia	2	
Sphaeriidae	5	
Total Count	52	

Physical Habitat

nysical nabitat		
Maryland Biological Strea	am Survey PHI	
Drainage Area (acres)	293.40	
Remoteness	3,31	
Percent Shading	91.34	
Epifaunal Substrate	100.00	
Instream Habitat	100.00	
Instream Woody Debris	72,18	
Bank Stability	91.29	
PHI Score	76.35	
PHI Narrative Rating	: Partially Degrad	ed
EPA Rapid Bioassessme	nt	
Epifaunal Substrate / Avail	able Cover	17
Pool Substrate Characteriz	ation	13
Pool Variability		11
Sediment Deposition		17
Channel Flow Status		17
Channel Alteration		12
Channel Sinuosity		9
Bank Stability - Left Bank		7
Right Bank		8
Vegetative Protection - Lef	t Bank	6
Rig	ht Bank	8
Riparian Vegetative Zone V	Width - Left Bank	9
	Right Bank	9
	RBP Score	143
RBP	Narrative Rating:	Supporting
Land Use Analysis		
Impervious Area (acre	es) 113.36 % I	mpervious 38.64
	a state of the second se	

	Land Use	Acres	% Area	
	Residential	83.63	28.51	
	Commercial	69.94	23.84	
	Industrial	10.28	3.50	
	Utility	1.99	0.68	
	Transportation	20.62	7.03	
	Row Crops	27.82	9.48	
	Woods	51.52	17.56	
	Open Space	23.97	8.17	
	Water	3.63	1.24	
-		and the second s		_

Site ID PTG-908-T-2009

Sampling Date 4/23/2009 ADC Map # 7, K-7 Watershed = Patapsco Tidal Subwatershed = Marley Creek 4 Location = Elvaton Road

Upstream from Mid-Point

Downstream from Mid-Point

This site is part of the Marley Creek 4 subwatershed in the Patapsco Tidal watershed. Residential landuse is the most prevalent here, contributing 55% of catchment area. Wooded and commercial landuse contribute 15% and 12%, respectively, and the overall imperviousness is 37%. This site had the greatest benthic community diversity of all sites in the study, with 42 different taxa present. Only 8% of the macroinvertebrates were considered intolerant of urban conditions, and the site rated Fair overall (BIBI score of 3.57). Some erosion was present along both banks, and lots of deposition was present throughout the channel. Channel substrate and deposition both consisted of large amounts of sand. The site was located very close to road, and field staff noted moderate amounts of trash present, along with some algae. Overall the PHI rated habitat at this site as Degraded (score of 64.3), and the RBP rated habitat as Supporting (score of 137).

Results	Biological Cond	ition : Fai	r							
	Habitat Rating :	RB	P: Su	pporting	g MP	HI: Degra	ded			
Stream Sub	system = Perenn	ial		Stream	m Origin = Spring-fed		S	tream T	ype = Warmw	vater
Proportion of	f the Stream that is	Ru	ins	20 40 40		No Evidend			ershed NPS F al Watershed	12102.00
	the Stream with A	all's and garde		10]	Ĩ.	100		ert Present ? ks Present ?	No No
Bedrock (Boulder () Cobble 0) Gravel 10	Sand Silt Clay	65 25 0		Evidence				ks Present ? or Dredging ?	
Water Chen	listry Te	emperature	e (C)	15.3	Conductivity (mS/cm	0.214	pН	7.84	DO (ppm)	9,6

Site ID PTG-908-T-2009

Biological Benthic Condition

Metrics	Value	Scores	
Total Taxa	42	5	
EPT Taxa	3	3	
% Intolerant to Urban	8.41	1	
# Ephemeroptera	1	з	
% Ephemeroptera	0.93	3	
# Scraper	5	5	
% Climbers	10.28	5	
BIBI Score: 3.57 Ra	ating: Fa	air	

Taxa List

Taxa	Count	
Ablabesmyia	- T	
Argia	3	
Aulodrilus		
Brillia	1	
Caecidotea	1	
Calopteryx.	2	
Chaetogaster	6	
Cheumatopsyche	- 4	
Chironomus	4	
Crangonyx	2	
Cricotopus	6	
Dicrotendipes	1	
Dubiraphia	3	
Enchytraeidae	2	
Eurylophella	4	
Gonomyia	1	
Macronychus	4	
Microvelia	2	
Naididae (Tubificinae)	3	
Nais	18	
Orthocladiinae	1	
Orthocladius	10	
Parakiefferiella	2	
Paraphaenocladius	18.1	
Phaenopsectra		
Physa	1	
Pisidium	2	
Polypedilum	7.	
Ptilostomis	1	
Rheocricotopus	1	
Simulium	1	
Slavina	2	
Smittia	T	
Somatochlora	2	
Sphaeriidae	T.	
Spirosperma	1	
Stenelmis	1	
Stenochironomus	14	
Synurella		
Thienemanniella	1	
Tipula	4	
Tvetenia	t.	
Total Count	107	

Physical Habitat

Maryland Biological Strea	m Survey PHI		
Drainage Area (acres)	1554.46		
Remoteness	3.31		
Percent Shading	91.34		
Eplfaunal Substrate	72.24		
Instream Habitat	83.16		
Instream Woody Debris	50.35		
Bank Stability	85.64		
PHI Score	64.34		
PHI Narrative Rating:	Degraded		
EPA Rapid Bioassessmen	t		
Epifaunal Substrate / Availa	ble Cover	11	
Pool Substrate Characteriza	tion	8	
Pool Variability		15	
Sediment Deposition		5	
Channel Flow Status		18	
Channel Alteration		18	
Channel Sinuosity		10	
Bank Stability - Left Bank		8	
Right Bank		8	
Vegetative Protection - Left	Bank	9	
Righ	t Bank	9	
Riparian Vegetative Zone W	lidth - Left Bank	9	
	Right Bank	9	
	RBP Score	137	
RBP N	arrative Rating:	Supporting	
Land Use Analysis			

Impervious Area (acres) 580.94 % Impervious 37.37 Land Use Acres % Area Residential 857.74 55.18 Commercial 189.90 12.22 Industrial 13.62 0.88 Utility 5.09 0.33 Transportation 6.74 104.80 Row Crops 36.59 2.35 Woods 232.81 14.98 Open Space 110.29 7.09 Water 3.63 0.23

Site ID PTG-939-T-2009

Sampling Date 4/27/2009 ADC Map # 8, B-8 Watershed = Patapsco Tidal Subwatershed = Marley Creek 4 Location = Cross Creek Drive

Upstream from Mid-Point

Downstream from Mid-Point

More than half of the catchment surrounding site PTG-939-T-2009 consists of residential landuse, with 36% wooded landuse. This results in 19.6% imperviousness in this catchment. The site can be accessed through a wooded lot on the right side of Cross Creek Drive. It is part of the Marley Creek 4 subwatershed in the Patapsco Tidal watershed. The benthic community at this site received a Fair rating with a BIBI score of 3.00. A diverse benthic community was present, with healthy numbers of scrapers, but less than 1% of the macroinvertebrates were considered intolerant of urban conditions. Both epifaunal and pool substrate were less than ideal, as the channel substrate consisted of 60% silt and 40% sand, with large amounts of deposition. Moderate amounts of trash were present at the site, and deep pools were lacking. Habitat rated Partially Degraded under the PHI and Partially Supporting under the RBP (scores of 70 and 118, respectively).

Results	Biological Co Habitat Rating		Fair RBP :	Partially S	upporting	MPHI	Partial	y Degr	aded		
Stream Sub	osystem = Perer	nnial	÷	Stream	n Origin = Sp	oring-fed		S	tream Ty	vpe = Warmv	vater
Proportion (of the Stream tha	tis:	Riffles Runs Pools	40 55 5		No	o Evidenc			ershed NPS I al Watershed	
Proportion o	f the Stream with	Aquatic	Vegetati	on 0	10 m			Ro	ad Culve	rt Present ?	No
Percent of Bedrock	Inorganic Subst	trate Col D San D Silt	_	0		Evidence of	Rig	ght Buf	fer Brea	ks Present ? ks Present ? or Dredging ?	No
Water Cher	nistry	Cla Tempera	y (ature (C)	19.2	Conductivit	y (mS/cm)	0.181	рН	7.06	DO (ppm)	8.6

Site ID PTG-939-T-2009

Biological Benthic Condition

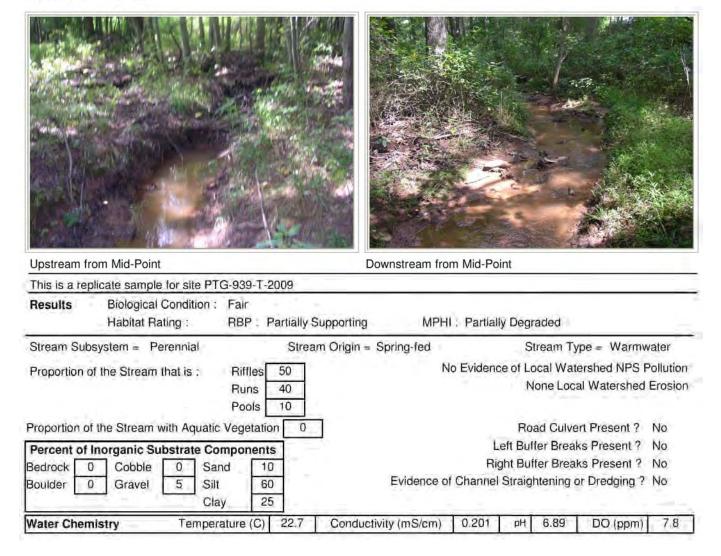
Metrics	Value	Scores
Total Taxa	25	5
EPT Taxa	1	1
% Intolerant to Urban	0.91	1
# Ephemeroptera	1	3
% Ephemeroptera	0.91	3
# Scraper	3	5
% Climbers	3.64	3
BIBI Score: 3.00 R	ating: Fa	air

Taxa List

Taxa	Count	
Acentrella	1	
Ancyronyx	2	
Aulodrilus	5	
Chaetocladius	1°	
Chaelogaster	4	
Cricotopus	1	
Cryptochironomus	1	
Culicoides	χ.	
Diplocladius	1	
Eclipidrilus	Ť -	
Limnodrilus	. T.	
Macronychus	2	
Micropsectra	1	
Naididae (Tubificinae)	28	
Nais	28	
Orthocladius	4	
Paratendipes	4	
Physa	2	
Pisidium	2	
Polypedilum	1	
Rheotanytarsus	2	
Rhyacodrilus	1	
Slavina	14	
Sphaeriidae	-X.	
Tipula	-Π	
Total Count	110	

Physical Habitat

Maryland Biological Stream	m Survey PHI	
Drainage Area (acres)	340.87	
Remoteness	38.62	
Percent Shading	78.67	
Epifaunal Substrate	47.27	
Instream Habitat	82.04	
Instream Woody Debris	73.44	
Bank Stability	100.00	
PHI Score	70.01	
PHI Narrative Rating:	Partially Degrad	led
EPA Rapid Bioassessmen	t	
Epifaunal Substrate / Availal		5
Pool Substrate Characteriza	tion	7
Pool Variability		5
Sediment Deposition		5
Channel Flow Status		16
Channel Alteration		18
Channel Sinuosity		8
Bank Stability - Left Bank		9
Right Bank		9
Vegetative Protection - Left	Bank	9
Righ	t Bank	9
Riparian Vegetative Zone W	idth - Left Bank	9
	Right Bank	9
	RBP Score	118
	and the second second	Partially Supporting


Land Use Analysis

Impervious Area (acres) 6	6.90 % Impe	rvious 19.62
Land Use	Acres	% Area
Residential	178.74	52.44
Commercial	0.75	0.22
Transportation	12,20	3.58
Pasture/Hay	2.96	0.87
Row Crops	15.97	4.69
Woods	124.15	36.42
Open Space	6.10	1.79
1 1 1 1		

Site ID PTG-D39-T-2009

Sampling Date 4/27/2009 ADC Map # 3, J-10 Watershed = Patapsco Tidal Subwatershed = Marley Creek 4 Location = Cross Creek Drive

Site ID PTG-D39-T-2009

Biological Benthic Condition

Metrics	Value	Scores
Total Taxa	21	3
EPT Taxa	2	З
% Intolerant to Urban	1.85	1
# Ephemeroptera	1-	3
% Ephemeroptera	0.93	3
# Scraper	4	5
% Climbers	12.96	5
BIBI Score: 3.29 Ri	ating: Fa	air

Taxa List

1	Taxa	Count
	Argia	2
	Brillia	2
	Chaetogaster	8
	Cordulidae	1
	Eclipidrilus	5
	Enchytraeidae	1
	Eurylophella	1
	Ironoquia	1
	Micropsectra	1
	Naididae (Tubilicinae)	26
	Nais	30
	Physa	3
	Planorbidae	1
	Polypedilum	9
	Rheotanytarsus	3
	Slavina	5
	Sminthundae	
	Stenelmis	2
	Stylaria	1
	Turbellaria	1
	Tvetenia	4
	Total C	ount 108

Physical Habitat

Maryland Biological Stream	n Survey PHI	
	340.87	
Drainage Area (acres)		
Remoteness	31.22	
Percent Shading	91.34	
Epifaunal Substrate	47.27	
Instream Habitat	76,49	
Instream Woody Debris	64.57	
Bank Stability	98.32	
PHI Score	68.20	
PHI Narrative Rating:	Partially Degrac	led
EPA Rapid Bioassessment	1	
Epifaunal Substrate / Availab	le Cover	5
Pool Substrate Characterizat	lion	6
Pool Variability		5
Sediment Deposition		7
Channel Flow Status		9
Channel Alteration		19
Channel Sinuosity		7
Bank Stability - Left Bank		8
Right Bank		8
Vegetative Protection - Left E	Bank	8
Right	Bank	8
Riparian Vegetative Zone W	idth - Left Bank	5
	Right Bank	9
	RBP Score	104

Land Use Analysis

Impervious Area (acres)	66.90	% Impe	ervious 19.6
Land Use		Acres	% Area
Residential		178,74	52,44
Commercial		0.75	0.22
Transportation		12.20	3.58
Pasture/Hay		2.96	0.87
Row Crops		15,97	4.69
Woods		124.15	36.42
Open Space		6.10	1.79

Site ID PTH-926-T-2009

Sampling Date 4/22/2009 ADC Map # 8, A-3 Watershed = Patapsco Tidal Subwatershed = Nabbs Creek Location = Nabbs Creek Road, north of Locust Grove Road

Upstream from Mid-Point

Downstream from Mid-Point

This mainly wooded site (80% of total catchment area) has a resulting low level of overall imperviousness in its surrounding catchment (less than 5% impervious). It is located off of Nabbs Creek Road, north of Locust Grove Road, and is part of the Nabbs Creek subwatershed in the Patapsco Tidal watershed. Habitat conditions were good at this site, as it rated Minimally Degraded under the PHI (score of 81.9), and Supporting under the RBP (score of 142, 71% comparable to reference conditions). Riffle substrate was minimal, but large amounts of rootwads/woody debris and overhanging grasses provided substrate for benthos, as did some emergent aquatic vegetation. A dirt road served as a severe buffer break along both sides of the stream, and moderate amounts of trash were present. Despite over 70% of the macroinvertebrates sampled at this site being considered intolerant of degraded urban conditions, a moderate community diversity and a lack of climbers and scrapers resulted in an overall benthic assessment of Poor (BIBI score of 2,14).

Results	Biological Condition : Habitat Rating :	Poor RBP : Supp	orting M	PHI : Minimally D	legraded		
Stream Sub	system = Perennial	S	Stream OrigIn = Spring-fed		Stream Ty	pe = Warmw	/ater
Proportion of	of the Stream that is :	Riffles 10 Runs 50 Pools 40		No Evidence of Mod		ershed NPS F al Watershed	
Proportion o	f the Stream with Aquation	Vegetation	5	F	Road Culve	rt Present ?	No
Percent of	Inorganic Substrate Co	mponents		Left B	uffer Break	ks Present ?	Yes
	0 Cobble 0 Sa 0 Gravel 0 Sill Cla	20	Evidence	Right B e of Channel Stra		ks Present ? or Dredging ?	Yes No
Water Cher	nistry Temper	ature (C) 11	.7 Conductivity (mS/cn	n) 0.126 pH	7.81	DO (ppm)	10.4

Site ID PTH-926-T-2009

Biological Benthic Condition

Metrics	Value	Scores	
Total Taxa	18	3	
EPT Taxa	2	З	
% Intolerant to Urban	70.91	5	
# Ephemeroptera	0	1	
% Ephemeroptera	0.00	1	
# Scraper	0	1	
% Climbers	0.00	1	

BIBI Score: 2.14 Rating: Poor

Taxa List

Taxa	Count
Ceratopogonidae	1
Diplocladius	2
Enchytraeidae	1
Gammarus	1
ronoquia	5
Libellulidae	4
Lumbricīdae	5
Nais	1
Paratendipes	1
Pseudorthocladius	3
Pseudosmittia	4
Rheocricolopus	4
Shipsa	51
Simulium	1
Stygobromus	2
Synurella	27
Tanypodinae	1
Zavrelimyia	1
Total Count	110

Physical Habitat

hysical Habitat			
Maryland Biological Stream	m Survey PHI		
Drainage Area (acres)	154.94		
Remoteness	91.57		
Percent Shading	73,32		
Epifaunal Substrate	52.41		
Instream Habitat	84.56		
Instream Woody Debris	100.00		
Bank Stability	89.45		
PHI Score	81.88		
PHI Narrative Rating:	Minimally Degra	ided	
EPA Rapid Bioassessmen	6 C		
Epifaunal Substrate / Availal		10	
Pool Substrate Characteriza		10	
Pool Variability		10	
Sediment Deposition		12	
Channel Flow Status		19	
Channel Alteration		19	
Channel Sinuosity		14	
Bank Stability - Left Bank		7	
Right Bank		7	
Vegetative Protection - Left	Bank	8	
Righ	t Bank	8	
Riparian Vegetative Zone W	idth - Left Bank	9	
	Right Bank	9	
	RBP Score	142	

Land Use Analysis

Impervious Area (acres) 6.93	% Impervious 4.48				
Land Use	Acres	% Area			
Residential	13.12	8.47			
Commercial	1.54	1.00			
Utility	11.14	7.19			
Transportation	5.09	3.29			
Woods	124.04	80.06			

Site ID PTH-930-T-2009

Sampling Date 4/23/2009 ADC Map # 9, B-1 Watershed = Patapsco Tidal Subwatershed = Nabbs Creek Location = Arbor Wood Place

Upstream from Mid-Point

Downstream from Mid-Point

At this site, wooded and open space landuses are most prevalent in the surrounding catchment (37% and 30%, respectively), followed by 25% industrial landuse. Resultant imperviousness is 18%. Part of the Nabbs Creek subwatershed of the Patapsco Tidal watershed, this site is located near the southwest corner of Arbor Wood Place. The benthic community sampled at this site had a poor community diversity (n=10 taxa), and low numbers of EPT and scraper taxa, with few climbers. Thus, it rated Very Poor according to the BIBI (score of 1.57). The PHI rated the habitat as Degraded (score of 57.2), while the RBP rated the habitat as Partially Supporting (score of 1.12). Moderate amounts of bank erosion were affecting the stability of both banks, and significant levels of deposition were present throughout the stream, resulting in poor substrate conditions. Emergent grasses, some SAV, and some algae were present in the stream, and only 30% of the canopy was shaded.

Results	Biological	Condition :	Very Po								
1.1	Habitat Ra	iting :	RBP :	Partially	Supporting	MPHI	: Degrad	led			
Stream Su	bsystem = Pe	erennial		Strea	am Origin = Spi	ring-fed	100	S	tream Ty	ype = Warmv	valer
Proportion	of the Stream	that is :	Riffles	20		No	Evidenc	e of Lo	ocal Wat	ershed NPS P	Pollution
	100 AD 10 AD 100 AD		Runs	50				Mode	rate Loc	al Watershed	Erosion
			Pools	30							
Proportion of	of the Stream v	vith Aquatic	Vegetati	on 5				Ro	ad Culve	ert Present ?	No
Percent of	Inorganic Su	bstrate Co	mponen	ts			L	eft Buf	fer Brea	ks Present ?	No
Bedrock	0 Cobble	0 Sa					Rig	ght Bul	fer Brea	ks Present ?	No
Boulder	0 Gravel	15 Silt	1	0	3	Evidence of	Channel	Straig	htening	or Dredging ?	No
1		Cla	y 1	0							
Water Che	mistry	Temper	ature (C)	15.5	Conductivity	(mS/cm)	0.426	рН	6.93	DO (ppm)	11.1

Site ID PTH-930-T-2009

Biological Benthic Condition

Metrics	Value	Scores
Total Taxa	10	1 -
EPT Taxa	1	1
% Intolerant to Urban	2.80	1
# Ephemeroptera	0	1
% Ephemeroptera	0.00	1
# Scraper	1	3
% Climbers	0.93	з
BIBI Score: 1.57 Ra	ating: Ve	ery Poor

Taxa List

Taxa		Count	
Agabus		7	
Chaetocladius		54	
Diplocladius		12	
Lumbricidae		4	
Naididae (Tubific	inae)	3	
Orthocladius		23	
Physa		Ť	
Shipsa		1.4	
Stegopterna		1 .	
Synurella		1	
	Total Count	107	

Physical Habitat

Maryland Biological Stream	m Survey F	Н
Drainage Area (acres)	119.01	
Remoteness	37.50	
Percent Shading	31.57	
Epifaunal Substrate	42.50	
Instream Habitat	53.97	
Instream Woody Debris	100.00	
Bank Stability	77.46	
PHI Score	57.17	
PHI Narrative Rating:	Degraded	
EPA Rapid Bioassessmen	t	
Epifaunal Substrate / Availal	ble Cover	7
Pool Substrate Characteriza	tion	7
Pool Variability		8
Sediment Deposition		3
Channel Flow Status		17
Channel Alteration		19
Channel Sinuosity		6
Bank Stability - Left Bank		4
Right Bank		4
Vegetative Protection - Left	Bank	9
Righ	t Bank	9
Riparian Vegetative Zone W	/idth - Left E	Bank 9
	Right I	Bank 10
	RBP S	core 112
RBP N	arrative Rat	ing: Partially Supporting
Land Use Analysis		
Impervious Area (acres	s) 21.53	% Impervious 18.09
Land Use		Acres % Area
Residential		1.41 1.19
Commercial		0.09 0.07
Industrial		29.75 24.99

6.61

0.94

44.37

35.84

5.56

0.79

37.28

30.11

Utility

Woods

Transportation

Open Space

Site ID PTM-920-T-2009

Sampling Date 4/21/2009 ADC Map # 10, B-5 Watershed = Patapsco Tidal Subwatershed = Hines Bog Pond Location = Fox Hollow Run

Upstream from Mid-Point

Downstream from Mid-Point

The catchment surrounding this site is made up of residential and wooded landuse (70% and 30% respectively). Approximately 12% of the catchment area is impervious. It is part of the Hines Bog Pond subwatershed in the Patapsco Tidal watershed, and is located off of Fox Hollow Run. During spring sampling, large numbers of juvenile spring peepers were present at this site. The macroinvertebrates in the benthic sample revealed a Very Poor stream, with low community diversity, only 1 EPT taxa, and no scraper taxa (BIBI score of 1.57). Habitat assessments were not quite as harsh, with the RBP rating the stream as Partially Supporting, and the PHI rating the stream as Partially Degraded. Severe bank erosion affected portions of both banks, and the riparian buffer zone along both banks was very narrow. A dirt road served as a severe buffer break along both sides of the stream. Field staff noted moderate amounts of trash present, and deep pools were lacking.

Results	Biologica Habitat F	I Condition : Rating :	Very Po RBP :		Supporting	MPH	: Partial	ly Deg	raded		
Stream Sub	system = f	Perennial		Strea	am Origin =	Mixture of Orig	jins.	S	tream T	ype = War	nwater
Proportion (of the Stream	n that is :	Riffles Runs Pools	60 39 1		Some Potent	ial Source			tershed NP al Watersh	
Proportion of	f the Stream	with Aquatic	Vegetati	on 0				Ro	ad Culve	ert Present	? No
Bedrock	Inorganic S O Cobble O Gravel	Ubstrate Co 0 Sau 10 Silt Cla	nd 9	0	-	Evidence of	Ri	ght Bu	ffer Brea	ks Present iks Present or Dredging	? Yes
Water Cher	nistry	Temper	ature (C)	12.9	Conduct	ivity (mS/cm)	0.168	pH	6.1	DO (ppr	n) 9

Site ID PTM-920-T-2009

Biological Benthic Condition

Metrics	Value	Scores
Total Taxa	13	1
EPT Taxa	1	- 1
% Intolerant to Urban	11.97	3
# Ephemeroptera	0	1
% Ephemeroptera	0.00	t.
# Scraper	0	1.1
% Climbers	5.13	3
		and the second

BIBI Score: 1.57 Rating: Very Poor

Taxa List

Taxa	Count
Culicoides	1
Ironoquia	2
Limnodrilus	3
Paracladopelma	T
Parametriocnemus	83
Paratendipes	3
Phaenopsectra	. a.
Polypedilum	5
Pseudorthocladius	1
Rheocricotopus	7
Synurella	- 14
Tanytarsus	1
Zavrelimyia	з
Total Count	117

Physical Habitat

Maryland Biological Stream	m Survey F	н	
Drainage Area (acres)	48,43		
Remoteness	42.78		
Percent Shading	100.00		
Epifaunal Substrate	89.03		
Instream Habitat	74.27		
Instream Woody Debris	100.00		
Bank Stability	68.32		
PHI Score	79.07		
PHI Narrative Rating:	Partially De	egraded	
EPA Rapid Bioassessmen	t		
Epifaunal Substrate / Availa	ble Cover		10
Pool Substrate Characteriza	tion		7
Pool Variability			3
Sediment Deposition			9
Channel Flow Status			17
Channel Alteration			15
Channel Sinuosity			15
Bank Stability - Left Bank			8
Right Bank			8
Vegetative Protection - Left			5
and the second sec	t Bank		5
Riparian Vegetative Zone W			3
	Right I		3
	RBP S	core	108
RBP N	arrative Ra	ting: Par	tially Supporting
Land Use Analysis			
Impervious Area (acres	s) 6.02	% Impe	ervious 12.44
Land Use		Acres	% Area
Residential		33.61	69.41
Woods		14.81	30.59

Site ID PTM-921-T-2009

Sampling Date 4/21/2009 ADC Map # 10, B-4 Watershed = Patapsco Tidal Subwatershed = Hines Bog Pond Location = Venetian Drive

Upstream from Mid-Point

Downstream from Mid-Point

Residential landuse is the most prevalent at site PTM-921-T-2009, contributing to 67% of the landuse in the surrounding catchment. The rest of the catchment is wooded with a small amount of transportation-related landuse. Overall, impervious surface accounts for 12.3% of the catchment area. The site is located off of Venetian Drive, near a property with a lot of heavy equipment. It is part of the Hines Bog Pond subwatershed in the Patapsco Tidal watershed. Moderate amounts of bank erosion were present along some portions of both streambanks at this site, and a storm drain served as a minor buffer break along the right side of the stream. In addition, the riparian buffer was narrow, particularly along the left side of the stream. Pool variability was poor, and no deep pools were present. However, embeddedness was very low, and very little trash was present at the site. Thus, habitat ratings were somewhat moderate, with an overall RBP score of 118 (Partially Supporting), and an overall PHI score of 76.8 (Partially Degraded). The benthic community at this site was diverse, and 45% of the macroinvertebrates were considered intolerant to urban conditions. However, a moderate number of EPT taxa and climbers, and a lack of scrapers resulted in an overall assessment of Poor, with a BIBI of 2.71.

Results	Biological Condition : Habitat Rating :	Poor RBP: Partial	v Supporting	MPHI	Partially	Degraded		
Stream Sut	bsystem = Perennial		ream Origin = Spr	12.44 C. 1	. Turnanj		/pe = Warm	water
Proportion	of the Stream that is :	Riffles 70 Runs 20 Pools 10	So	ome Potentia	0.000.000.000	of Local Wat Moderate Loc	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	C. 17.17.79(C) 7.41
Proportion o	of the Stream with Aquatic	Vegetation	D]			Road Culve	ert Present ?	No
Percent of	Inorganic Substrate Co	mponents			Lef	t Buffer Brea	ks Present ?	No
Bedrock	0 Cobble 25 Sar 0 Gravel 20 Silt Cla	5	- 1	Evidence of	4	nt Buffer Brea Straightening, d		
Water Cher	mistry Temper	ature (C) 11.7	Conductivity	(mS/cm)	0,222	рН 6,22	DO (ppm)	9

Site ID PTM-921-T-2009

Biological Benthic Condition	Biological	Benthic	Condition	
------------------------------	------------	---------	-----------	--

Metrics	Value	Scores
Total Taxa	27	5
ЕРТ Таха	2	3
% Intolerant to Urban	45.45	5
# Ephemeroptera	Q	1
% Ephemeroptera	0.00	1
# Scraper	0	1
% Climbers	2.73	з
BIBI Score: 2.71 R	ating: Po	oor

Taxa List

Taxa	Count
Aulodrilus	2
Caecidotea	22
Calopteryx	1
Cordulegaster	· ·
Crambidae) I
Crangonyx	3
Diplocladius	5
Eclipidrilus	1
Hemerodromia	1
Limnodrilus	3
Limnophyes	1
Mallochohelea	1
Meropelopia	2
Naididae (Tubificinae)	14
Nais	1.
Paratendipes	2
Pisidium	2
Polycentropus	9
Ptilostomis	1
Rheocricotopus	3
Simulium	2
Smittia	1
Stegopterna	15
Synurella	11
Thienemannimyia group	2
Tipula	2
Zavrelimyia	9
Total Cou	nt 110

Physical Habitat

Maryland Biological Stream	m Survey I	РНІ	
Drainage Area (acres)	45.31		
Remoteness	31.22		
Percent Shading	58.94		
Epifaunal Substrate	83.65		
Instream Habitat	100.00		
Instream Woody Debris	93.33		
Bank Stability	93.54		
PHI Score	76.78		
PHI Narrative Rating:	Partially D	egraded	
EPA Rapid Bioassessmen	t		
Epifaunal Substrate / Availal			12
Pool Substrate Characteriza	tion		7
Pool Variability			4
Sediment Deposition			11
Channel Flow Status			18
Channel Alteration			19
Channel Sinuosity			14
Bank Stability - Left Bank			7
Right Bank			6
Vegetative Protection - Left			2
	t Bank		7
Riparian Vegetative Zone W			2
	Right I		9
	RBP S	Score	118
RBP N	arrative Ra	ting: Pa	ntially Supporting
Land Use Analysis			
Impervious Area (acres	s) 5.56	% Imp	ervious 12.28
Land Use		Acres	% Area
Residential		30.36	67.00
Transportation		0.68	1.50
Woods		14.28	31.50

Site ID PTN-919-T-2009

Sampling Date 4/23/2009 ADC Map # 10, D-5 Watershed = Patapsco Tidal Subwatershed = Hines Bog Location = Choptank Avenue, south of Hines Pond

Upstream from Mid-Point

1.000

Downstream from Mid-Point

Located off of the Choptank Avenue cul-de-sac, south of Hines Pond, this site is part of the Hines Bog subwatershed in the Patapsco Tidal watershed. Less than 6% of the catchment is impervious, as surrounding landuses are wooded (62%) and residential (38%). This site had healthy benthic community diversity, a healthy number of climbers, and more than 50% of the macroinvertebrates sampled were considered intolerant to urban conditions. However, only 2 EPT taxa were present in the sample and no scrapers, so the site rated Fair with a BIBI score of 3.00. Streambanks at this site were stable with no erosion, and a shaded canopy was present, along with only a small amount of trash. However, epifaunal substrate and pool substrate received low ratings, and pool variability was poor with no deep pools present. Channel substrate was composed of 90% sand with some silt, and sediment deposition was extensive. Overall, the RBP rated the habitat here as Partially Supporting (58.5% comparable to reference, with a total score of 117). The PHI rated habitat Minimally Degraded, with an overall score of 85.3.

Results		Rating :		Partially	Supporting	MPHI	I: Minima	lly De	graded		
Stream Su	bsystem =	Perennial		Stre	am Origin = Sw	amp and B	og	S	tream Ty	/pe = Warmw	vater
Proportion	of the Strea	am that is :	Riffle Runs Pools	30		N	o Evidenc			ershed NPS F al Watershed	
Proportion of Percent of		2.1.036. 1.1.0	1. L. 2011					eft Buf	fer Brea	ert Present ? ks Present ?	No
Bedrock Boulder	0 Cobbl 0 Grave	1 0 5	Sand Silt Clay	90 10 0		Evidence of				ks Present ? or Dredging ?	2 C 1 C
Water Che	mistry	Temp	perature (C) 10,3	Conductivity	y (mS/cm)	0.146	pН	7.41	DO (ppm)	9.2

Site ID PTN-919-T-2009

Biological Benthic Condition

Metrics	Value	Scores	
Total Taxa	26	5	
EPT Taxa	2	3	
% Intolerant to Urban	53.90	5	
# Ephemeroptera	0	1	
% Ephemeroptera	0.00	1	
# Scraper	0	1	
% Climbers	12.77	5	

BIBI Score: 3.00 Rating: Fair

Taxa List

Taxa	Count	
Apsectrotanypus	.5	
Bezzia	1	
Brundiniella	2	
Caecidotea	7	
Calopteryx	2	
Clinotanypus	2	
Cordulildae	1	
Dolophilodes	n ,	
Heterofrissocladius	10	
llybius	3	
Isotomidae	2	
Micropsectra	12	
Nais	2	
Natarsia	1	
Orthocladiinae	1	
olycentropus	2	
Pseudolimnophila	2	
Ptychoptera	13	
Rheocricotopus	2	
Sialis	7	
Synurella	40	
Tanypodinae	1	
Tanytarsus	3	
Thienemannimyia group	14	
Zavrelia	đ	
Zavrelimyia	10	
Total Co	ount 141	

Physical Habitat

nysical habitat		
Maryland Biological Stream	m Survey PHI	
Drainage Area (acres)	10.50	
Remoteness	51.66	
Percent Shading	100.00	
Epifaunal Substrate	69.94	
Instream Habitat	89.92	
Instream Woody Debris	100.00	
Bank Stability	100.00	
PHI Score	85.25	
PHI Narrative Rating:	Minimally Degra	aded
EPA Rapid Bioassessmen	t	
Epifaunal Substrate / Availal	ble Cover	5
Pool Substrate Characteriza	ition	6
Pool Variability		2
Sediment Deposition		5
Channel Flow Status		19
Channel Alteration		18
Channel Sinuosity		8
Bank Stability - Left Bank		9
Right Bank		9
Vegetative Protection - Left	Bank.	9
Righ	t Bank	9
Riparian Vegetative Zone W	/idth - Left Bank	9
	Right Bank	9
	RBP Score	117
RBP N	arrative Rating:	Partially Supporting
Land Use Analysis		
Impervious Area (acres	s) 0.61 %I	mpervious 5.79

and Use	Acres	% Area
Residential	4.03	38,42
Woods	6.46	61.58

APPENDIX B

BENTHIC AND HABITAT ASSESSMENT QA/QC

THIS PAGE INTENTIONALLY LEFT BLANK

B.1 BENTHIC TAXONOMY QA/QC

As a QA/QC measure, five of the benthic samples (10% of the original 50) were randomly selected for re-identification by a taxonomist who did not participate in the original identifications. We compared the taxonomic results (including counts and identifications) generated by the primary and QC-taxonomists for each sample.

Percent disagreement in enumeration (PDE) was calculated as

$$PDE = \frac{|n_1 - n_2|}{n_1 + n_2} \cdot 100$$

where n_1 is the number of specimens counted in the sample by the first taxonomist and n_2 is the number of specimens counted by the QC taxonomist.

Percent taxonomic disagreement (PTD) was calculated as

$$PTD = \left[1 - \left(\frac{comp_{pos}}{n}\right)\right] \cdot 100$$

where $comp_{pos}$ is the number of agreements (positive comparisons) and *n* is the total number of specimens in the larger of the two counts.

The five benthic samples that were randomly selected for re-identification by an independent taxonomist showed good agreement. The percent disagreement in enumeration (PDE) and percent taxonomic disagreement (PTD) were calculated for each sample (Table B-1). Average values for each parameter were also examined, and both the average PDE and average PTD were within an acceptable range, falling well below the measurement quality objectives of a mean PDE less than or equal to 5% and a mean PTD less than or equal to 15% (Tetra Tech 2007). Complete taxa lists and counts for these laboratory QC sites are included in Table B-2.

Table B-1. Benthic identification laboratory QC summary statistics.				
Site	PDE	PTD		
BK8-901-T-2009	0.86%	1.71%		
PT0-911-T-2009	0.46%	5.45%		
PT5-931-T-2009	0.00%	1.87%		
PT8-927-T-2009	0.00%	0.00%		
PTC-942-T-2009	0.00%	6.12%		
Average	0.26%	3.03%		

Table B-2. Benthic macroinvertebrate identifications from samples at						
five randomly chosen sites						
taxonomist (original) and a						
(duplicate).						
Site: BK8-901	-T-2009					
Benthic Macroinvertebrate – Lowest	Original	Duplicate				
Practical Level	0	2				
Caecidotea	74	72				
Chrysops	5	5				
Culicoides	6	6				
Cymbiodyta	1	1				
Diplocladius	1	1				
Erioptera	1	1				
Girardia	1	1				
Hexatoma	3	3				
Limnodrilus	2	2				
Mallochohelea	1	1				
Naididae (Tubificinae)	3	3				
Paranais	1	1				
Rheocricotopus	5	5				
Shipsa	1	1				
Sphaeriidae	3	3				
Spirosperma	1	1				
Synurella	7	7				
Zavrelimyia	1	1				
Site: PT0-911	-T-2009					
Benthic Macroinvertebrate – Lowest Original Duplicate						
Practical Level						
Argia	1	1				
Aulodrilus	1	1				
Bezzia	1	1				
Caecidotea	2	2				
Chironomidae	0	1				
Chironominae	0	2				
Corynoneura	9	8				
Diplectrona	1	1				
	1					
Gammarus		59				
Gammarus Gomphus	1 58 1	59 1				
Gammarus Gomphus Naididae (Tubificinae)	58					
Gomphus	58 1	1				
Gomphus Naididae (Tubificinae)	58 1 6	1 6				
Gomphus Naididae (Tubificinae) Nais	58 1 6 1	1 6 1				
Gomphus Naididae (Tubificinae) Nais Paratanytarsus	58 1 6 1 1	1 6 1 1				
Gomphus Naididae (Tubificinae) Nais Paratanytarsus Paratendipes	58 1 6 1 1 4	1 6 1 1 4				
Gomphus Naididae (Tubificinae) Nais Paratanytarsus Paratendipes Pisidium	58 1 6 1 1 4 2	1 6 1 1 4 4 4				
GomphusNaididae (Tubificinae)NaisParatanytarsusParatendipesPisidiumPolycentropus	58 1 6 1 4 2 1	1 6 1 4 4 1				
Gomphus Naididae (Tubificinae) Nais Paratanytarsus Paratendipes Pisidium Polycentropus Polypedilum Prodiamesa	58 1 6 1 4 2 1 2 1 2	1 6 1 4 4 1 2				
Gomphus Naididae (Tubificinae) Nais Paratanytarsus Paratendipes Pisidium Polycentropus Polypedilum Prodiamesa Rheotanytarsus	58 1 6 1 4 2 1 2 3	1 6 1 4 4 1 2 3				
Gomphus Naididae (Tubificinae) Nais Paratanytarsus Paratendipes Pisidium Polycentropus Polypedilum Prodiamesa	58 1 6 1 4 2 1 2 3 1	1 6 1 4 4 1 2 3 1				

Table B-2. (Continued)						
PT0-911-T-2009	(Continued)					
Benthic Macroinvertebrate – LowestOriginalDuplicatePractical Level						
Tipula	1	1				
Tribelos	5	3				
Zavrelimyia	1	1				
Site: PT5-93	1-T-2009					
Benthic Macroinvertebrate – Lowest	Original	Duplicate				
Practical Level	e	1				
Cricotopus	65	64				
Gammarus	3	3				
Hydropsyche	1	1				
Limnodrilus	1	1				
Naididae (Tubificinae)	2	2				
Nais	27	27				
Orthocladinae	0	2				
Orthocladius	4	3				
Polypedilum	3	3				
Smittia	1	1				
Site: PT8-92'	7-T-2009					
Benthic Macroinvertebrate – Lowest	Original	Duplicate				
Practical Level	C	-				
Aeshna	1	1				
Chaetocladius	19	19				
Ironoquia	1	1				
Lepidostoma	1	1				
Orthocladius	1	1				
Simulium	1	1				
Tipula	1	1				
Site: PTC-94	2-T-2009					
Benthic Macroinvertebrate – Lowest Practical Level	Original	Duplicate				
Caecidotea	1	1				
Chaetocladius	5	5				
Chironomus	7	7				
Crambidae	1	1				
Cryptochironomus	2	2				
Culicoides	1	1				
Dicrotendipes	4	4				
Eclipidrilus	2	0				
Enchytraeidae	7	7				
Gammarus	15	15				
Limnodrilus	9	8				
Lumbriculidae	0	2				
Lumbriculus	2	2				
Naididae (Tubificinae)	21	22				
Nais	3	3				
Orthocladius	2	2				

Table B-2. (Continued)					
PTC-942-T-2009 (PTC-942-T-2009 (Continued)				
Benthic Macroinvertebrate – LowestOriginalDuplicate					
Practical Level					
Peltodytes	1	1			
Pisidium	2	5			
Polypedilum	8	8			
Sciomyzidae	1	1			
Sphaeriidae	3	0			
Unionicola	1	1			

B.2 FIELD DUPLICATES QA/QC FOR BIBI SCORES AND INDIVIDUAL METRIC SCORES

Five duplicate sites were sampled for benthic macroinvertebrates in the field just upstream of their partner site following identical procedures. The duplicate sites were assigned site identification numbers that allow for quick reference to their partner site. Each of the duplicate sites has a "D" as its fourth digit (i.e., BK3-D07-T-2009). The remainder of the site identification number matches its partner site, i.e., site BK3-D07-T-2009 is the duplicate of site BK3-907-T-2009. BIBI metrics and scores were calculated for duplicate sites.

For five duplicate field sites, BIBI scores were compared between the targeted site and its duplicate pair. Precision was calculated from the two duplicate samples by relative percent difference (RPD) as

$$RPD = \left(\frac{|A-B|}{A+B}\right) \times 2 \times 100$$

where A and B = the two values. Relative standard deviation (RSD), also known as coefficient of variability (CV) was calculated as

$$RSD = \frac{sd}{\overline{X}} \times 100$$

where *sd* is the standard deviation and \overline{X} is the mean of the two values.

Mean RPD and RSD values were calculated for all five pairs of duplicate field sites and compared to measurement quality objectives. For this study, measurement quality objectives included a mean RPD and a mean RSD less than or equal to 15% for each parameter (Tetra Tech 2007).

In addition, for the five duplicate field sites, values for individual BIBI metrics were compared between the targeted site and its duplicate pair. Several different measures of precision were calculated, including RPD, root mean square error (RMSE), CV (or RSD), and 90% Confidence Interval (CI). These were compared to measurement quality objectives for certain metrics as available (Table B-3). Because of changes made to the BIBI (Southerland et al. 2007), Anne Arundel County does not yet have available measurement quality objectives for the Number of Ephemeroptera Taxa, Percent Intolerant to Urban, and Percent Climber metrics.

Table B-3. Measurement quality objectives for BIBI metrics (from Tetra Tech 2005)				
Matria	MQO			
Metric	Median RPD	CV	90% CI	
Total Number of Taxa	< 30	< 20	± 10	
Number of EPT Taxa	< 30	< 20	± 10	
Percent Ephemeroptera	< 30	< 20	± 10	
Number Scraper Taxa	< 30	< 70	± 10	

For four of the five QC samples, field duplicates had BIBI scores in the same rating category as the original samples from corresponding sites (Table B-4). Only one pair differed in rating, as the study site sample had a BIBI score of 2.14 (Poor) and the duplicate sample had a BIBI score of 3.00 (Fair). The relative percent difference and relative standard deviation (RPD and RSD) between each targeted site and its paired duplicate were calculated for each pair. The average RPD was 14.54%, while the average RSD was 10.29%, both below the measurement quality objectives of 15% for each parameter (Tetra Tech 2007).

Table B-4. BIBI scores and narrative ratings for field duplicate QC sites						
Site	BIBI Score	BIBI Narrative Rating				
BK3-907-T-2009	2.71	Poor				
BK3-D07-T-2009	2.71	Poor				
PT0-917-T-2009	3.00	Fair				
PT0-D17-T-2009	3.57	Fair				
PT3-947-T-2009	2.14	Poor				
PT3-D47-T-2009	2.43	Poor				
PTF-915-T-2009	2.14	Poor				
PTF-D15-T-2009	3.00	Fair				
PTG-939-T-2009	3.00	Fair				
PTG-D39-T-2009	3.29	Fair				

Additional analysis of field duplicate data was conducted to assess the variability of individual benthic metric values. Among the five pairs, metric values generally showed good consistency (Table B-5). Precision for the five pairs was evaluated using four measures (Table B-6). Two metrics that yielded high RPD and coefficient of variation (CV) tended to be influenced by low values and by a greater difference observed in a single site (e.g., 5 EPT taxa at site PT0-917-T-2009 v. 1 EPT taxa at its duplicate PT0-D17-T-2009), while most site pairs were more consistent (e.g., 2 EPT taxa v. 1 EPT taxa).

Table B-5. Individual metric scores from BIBI for field duplicate QC sites							
Site	Number of Taxa	Number of EPT Taxa	Number of Ephem- eroptera Taxa	Percent Intolerant Urban	Percent Ephem- eroptera	Number Scraper Taxa	Percent Climbers
BK3-907-T-2009	32	2	0	30.4	0	0	7.8
BK3-D07-T-2009	30	1	0	45.1	0	1	4.4
PT0-917-T-2009	29	1	0	16.7	0	5	18.2
PT0-D17-T-2009	36	5	0	26.7	0	6	8.6
PT3-947-T-2009	15	1	0	0	0	2	5.6
PT3-D47-T-2009	19	2	0	0	0	1	11.3
PTF-915-T-2009	16	2	0	0	0	0	14.2
PTF-D15-T-2009	35	1	0	15.3	0	4	27.1
PTG-939-T-2009	25	1	1	0.9	0.9	3	3.6
PTG-D39-T-2009	21	2	1	1.9	0.9	4	13.0

Table B-6. Metric precision represented by median relative percent difference (RPD), root mean square error (RMSE), coefficient of variation (CV), and 90% confidence interval (CI) for 5 sample pairs. Shaded cells indicate values that exceed measurement quality objectives as presented in Tetra Tech (2005). * indicates no measurement quality objectives are currently available for this parameter. n.a. is shown when division by zero precludes estimation of parameter.

Metric	Measures of Precision				
Metric	Median RPD	RMSE	CV	90% CI	
Total Number of Taxa	21.57	9.44	36.61	±15.49	
Number of EPT Taxa	66.67	2.00	111.11	± 3.28	
Number of Ephemeroptera Taxa*	n.a.	0.00	0.00	± 0.00	
Percent Intolerant Urban*	n.a.	10.50	76.62	±17.21	
Percent Ephemeroptera	n.a.	0.01	4.10	± 0.01	
Number Scraper Taxa	66.67	2.00	76.92	± 3.28	
Percent Climbers*	67.91	8.84	77.69	± 14.49	

B.3 PHYSICAL HABITAT DUPLICATES QA/QC FOR RBP HABITAT AND PHI SCORES

Habitat was also assessed in the field at five duplicate sites just upstream of their partner site following identical procedures. The duplicate sites were assigned site identification numbers that allow for quick reference to their partner site. Each of the duplicate sites has a "D" as its fourth digit (i.e., BK3-D07-T-2009). The remainder of the site identification number matches its partner site, i.e., site BK3-D07-T-2009 is the duplicate of site BK3-907-T-2009. RBP habitat assessment scores and MPHI scores were calculated for the duplicate sites.

Field duplicate sites received the same RBP narrative rating as their respective targeted site at two of the five sites (Table B-7). In the cases where the duplicate sites' narrative rating did not match their paired target site rating, they different by only one assessment category. For example, duplicate site PT0-D17-T-2009 was rated Partially Supporting (61% of reference) while its paired targeted site PT0-917-T-2009 was rated Supporting (63.5% of reference). When comparing Percent of Reference scores between the targeted sites and their paired duplicate site, differences ranged from a minimum of 2.5% to a maximum of 10.5%.

Table B-7. RBP and PHI Scores and associated ratings for field duplicate QC sites					
	Total RBP	Percent of		PHI	PHI Narrative
Site	Score	Reference	RBP Classification	Score	Rating
BK3-907-T-2009	148	74	Supporting	81.49	Minimally Degraded
BK3-D07-T-2009	139	69.5	Supporting	85.16	Minimally Degraded
PT0-917-T-2009	127	63.5	Supporting	65.81	Degraded
PT0-D17-T-2009	122	61	Partially Supporting	66.52	Partially Degraded
PT3-947-T-2009	152	76	Comparable to	71.02	Partially Degraded
			Reference		
PT3-D47-T-2009	134	67	Supporting	68.79	Partially Degraded
PTF-915-T-2009	139	69.5	Supporting	57.72	Degraded
PTF-D15-T-2009	118	59	Partially Supporting	55.21	Degraded
PTG-939-T-2009	118	59	Partially Supporting	70.01	Partially Degraded
PTG-D39-T-2009	104	52	Partially Supporting	68.20	Partially Degraded

Field duplicate sites received the same PHI narrative rating as their corresponding targeted site at all but one of the five sites (Table B-7). In the one case that did not match, the narrative rating was different by only one assessment category and less than 1 point on the rating scale. Duplicate site PT0-D17-T-2009 received a PHI score of 66.5 (Partially Degraded) while its paired targeted site PT0-917-T-2009 received a PHI score of 65.8 and a narrative rating of Degraded.